DEPARTMENT OF PHYSICS

About the Department

The Department of Physics is a founder member of our college from its inception in 1964. From 1964 to 1971, the Department contributed its part in offering Pre-University Programme only. In June 1971, affiliation was granted by the Madurai University to start Special B.Sc., Programme in Physics. The Special B.Sc., Physics was replaced by general B.Sc., Physics Programme from the academic year 1972 – 1973. The Department has dedicated and qualified staff having expertise in the diverse fields of Physics. The Department has research projects in the field of Spectroscopy, Materials Science and Nanoscience.

PRINCIPAL

Dr. P. Balagurusamy, M.A., M.Phil., M.Ed., P.G.D.C.A., Ph.D.,

STAFF

1. Dr. S. Saravanan, M.Sc., M.Phil., B.Ed., Ph.D.,	-Associate Professor and Dean
2. Dr. R. Jayaraman, M.Sc., M.Phil., Ph.D.,	- Assistant Professor and HOD
3. Dr. K. Ramavenkateswari, M.Sc., M.Phil., Ph.D.,	- Assistant Professor
4. Dr. K. Jayabala, M.Sc., M.Phil., Ph.D.,	- Assistant Professor
5. Dr. T. Rajesh Kumar, M.Sc., M.Phil., B.Ed., Ph.D.,	- Assistant Professor
6. Dr. P. Uma Mageshwari, M.Sc., M.Phil., B.Ed., Ph.D.,	- Assistant Professor

Programme Outcomes (POs)

On successful completion of the B.Sc. programme, the graduates will be able to,

- 1. Apply the knowledge acquired in the respective disciplines and also have a multidisciplinary Perspective towards the study of sciences.
- 2. Attain skills like analytical reasoning, critical thinking and problem solving to evince interest in higher education and research for offering solutions to societal and environmental problems.
- 3. Communicate articulately and effectively and interpret the results obtained from scientific studies and put forth innovative ideas to carve a niche in their domain.
- 4. Instill the principles and ethics learnt from the field of study and exhibit the qualities like leadership, entrepreneurship and teamwork for discharging their duties as responsible citizens.
- 5. Utilize the growing advancements in Information and Communication Technology and Embrace digital learning to become life-long learners.

Programme Specific Outcomes (PSOs)

On successful completion of the B.Sc., Physics programme, the graduates will be able to

- PSO1: Identify the key concepts, principles and fundamental laws that are related to the study of various areas of physics.
- PSO2: Demonstrate the applications of physics principles, concepts and laws with necessary experimental background and assess their consequences.
- PSO3: Explain the mathematical foundations underlying the physics principles, concepts and laws.
- PSO4: Solve problems in physics by identifying the key concepts and principles to solve them.
- PSO5: Plan and execute an experiment through careful observations, precise measurements, and effectively present the results.
- PSO6: Apply appropriate techniques and modern tools to do scientific activities.
- PSO7: Extend the knowledge about the properties of materials and its applications for developing technology to ease the problems related to the society.
- PSO8: Understand the broad impact of Physics in a global, economic, environmental, and social context.
- PSO9: Gain Knowledge of grammatical conventions and become competent to face competitive examinations through development of language skills.
- PSO10: Understand the Environment System, its significance, man- environment relationship, environmental issues faced by the world and realize the need for sustainable ways for living.
- PSO11: Extend the knowledge gained from various fields in a proper manner to act as a good citizen by inculcating in them moral values and ethics

PSO12: Translate the skills to recognize the need for the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

Under Choice Based Credit System (CBCS)

Course Pattern for B.Sc. (Physics)

The Undergraduate degree Programme consists of five vital components. They are as follows: Part I Language (Tamil / French)

Part II English

Part III Core Courses (Theory & Practical) Core Electives, Allied, Project and Internship.

Part IV Skill Based, Non Major Electives, Environmental Studies, Value Education and Self Study. Part V Physical Education (Non Semester) and Extension Activities.

Objectives

The Syllabus for B.Sc. (Physics) programme under semester system has been designed on the basis of Choice Based Credit System (CBCS), which would focus on job oriented programmes and value added education. It will be effected from June 2020 onwards.

Eligibility

Candidates should have passed the Higher Secondary Examination, Government of Tamil Nadu or any other examination accepted by the syndicate of Madurai Kamaraj University as equivalent there to.

Duration of the Programme

The students who join the B.Sc. (Physics) Programme shall undergo a study period of three academic years – Six semesters.

Part	Semester	Specification	No. of Courses	Hours	Credit	Total credits	
Ι	I - IV	Languages(Tamil/French)	4	24	12	12	
II	I - IV	English	4	24	12	12	
Ш	I - VI	Core Courses Theory Practicals Project Internship	10 5 1	36 22 2	36 16 2	102	
	V & VI	Core Elective Courses	2	8	8		
	I - VI	Allied Courses	10	48	40	.0	
	V & VI	Skill Based Courses	4	8	8		
IV	III & IV	Self Study Courses Soft Skills I Soft Skills II	2	-	4	20	
	I & II	Non Major Electives	2	4	4	20	
	I & II	 Value Education Environment & Gender Studies 	1 1	2 2	4		
v	I & II	Physical Education (Non- Semester Course) (Practical)	1	-	2	4	
	IV	Extension Activities	1	-	2		
		TOTAL	48	180	150	150	

SUMMARY OF HOURS AND CREDITS

Department of Physics						
Semester	Part	Study	Course	Course Title	Hours	Credit
	Ι	Tamil - I	20UTAL11	jw;fhy ftpijAk; rpW fijAk;	6	3
	II	English – I	20UENL11	Language Through Literature -I	6	3
		Core Course – I	20UPHC11	Mechanics	3	3
		Core Course – II	20UPHC12	Properties of Matter	3	3
Ι	III	Core Practical – I	20UPHC2P	Major Physics Practicals-I	2	-
		Allied Course – I	20UMAA11	Allied Mathematics - I	6	5
	IV	Non Major Elective I	20UPHN11	Physics in Everyday Life – I	2	2
			20UVEV11	Value Education	2	2
	V	Extension Activity	20UPEV2P	Physical Education – Practical(Non - Semester Course)	-	-
			TOTAL	·	30	21
	Ι	Tamil – II	20UTAL21	gf;jp ,yf;fpaKk; GjpdKk;	6	3
	II	English –II	20UENL21	Language Through Literature -II	6	3
		Core Course – III	20UPHC21	Thermal Physics	3	3
		Core Course – IV	20UPHC22	Geometrical Optics and Acoustics	3	3
	III	Core Practical – I	20UPHC2P	Major Physics Practicals-I	2	2
II		Allied Course – II	20UMAA21	Allied Mathematics - II	6	5
		Non Major Elective II	20UPHN21	Physics in Everyday Life - II	2	2
	IV		20UEGS21	Environment & Gender Studies	2	2
	V	Extension Activity	20UPEV2P	Physical Education – Practical (Non- Semester Course)	-	2
				TOTAL	30	25
	Ι	Tamil - III	20UTAL31	fhg;gpa ,yf;fpaKk; ciueilAk;	6	3
	II	English – III	20UENL31	Language Through Literature -III	6	3
		Core Course - V	20UPHC31	Electricity and Electromagnetism	4	4
III		Core Practical – II	20UPHC4P	Major Physics Practicals -II	2	-
	III	Allied Course -III	20UMAA31	Allied Mathematics - III	6	5
		Allied Course - IV	20UCHA11	Inorganic and Organic Chemistry	4	4
		Allied Practical - I	20UCHA2P	Volumetric Analysis	2	-
	IV	Self Study Course - I	20USSS31	Soft Skills -I	-	2
				TOTAL	30	21

B.Sc Physics
Course Pattern – from 2020-2021 Batch
Department of Physics

	Ι	Tamil – IV	20UTAL41	gz;ila ,yf;fpaKk; ehlfKk;	6	3
--	---	------------	----------	---------------------------	---	---

	II	English – IV	20UENL41	Language Through Literature -IV	6	3
		Core Course - VI	20UPHC41	Physical Optics & Spectroscopy	4	4
IV		Core Practical – II	20UPHC4P	Major Physics Practicals -II	2	2
	III	Allied Course - V	20UMAA41	Allied Mathematics - IV	6	5
		Allied Course - VI	20UCHA21	Inorganic and Physical Chemistry	4	4
		Allied Practical - I	20UCHA4P	Volumetric Analysis	2	2
	IV	Self Study Course – II	20USSS41	Soft Skills II	-	2
	v	Extension Activity	20UEX4SC	All Clubs, NCC,NSS, etc.	-	2
				TOTAL	30	27
		Core Course – VII	20UPHC51	Relativity & Quantum Mechanics	4	4
		Core Course – VIII	20UPHC52	Atomic Physics	4	4
		Core Practical – III	20UPHC6P	Major Physics Practicals-III	2	-
		Core Practical – IV	20UPHC6Q	Major Physics Practicals-IV	2	-
		Core Practical - V	20UPHC6R	Major Physics Practicals-V	2	-
	III		20UPHE51	Classical Physics		
V		Core Elective Course - I	20UPHE52	Statistical Physics	4	4
			20UPHE53	Physics of Electronic Appliances		
		Core Project Course	20UPHC5P	Major Physics Project	2	2
		Allied Course - VII	20UCHA31	Organic and Physical Chemistry	4	4
		Allied Practical - II	20UCHA4P	Organic Analysis	2	-
	IV	Skill Based Course- I	20UPHS51	Nano Physics	2	2
	1 V	Skill Based Course - II	20UPHS52	Basic Electronics	2	2
			TOTAL		30	22

			ТОТ	AL FOR ALL SEMESTERS	180	150
	TOTAL			30	34	
	IV	Skill Based Course- IV	20UPHS62	Digital and Communication Electronics	2	2
	IV	Skill Based Course- III	20UPHS61	Energy Physics	2	2
		Allied	20UCHA4P	Organic Analysis	2	2
		Allied Course - VIII	20UCHA41	Organic , Inorganic and Physical Chemistry	4	4
VI		Core Elective Course -II	20UPHE61 20UPHE62 20UPHE63	Space Physics Bio-Medical Physics Laser Physics	4	4
	III	Core Practical - V	20UPHC6R	Major Physics Practicals-V	2	4
		Core Practical - IV	20UPHC6Q	Major Physics Practicals-IV	3	4
		Core Practical - III	20UPHC6P	Major Physics Practicals-III	3	4
		Core Course - X	20UPHC62	Nuclear Physics	4	4
		Core Course -IX	20UPHC61	Solid State Physics	4	4

Allied Courses

There will be TEN Allied courses to fulfill the B.Sc., (Physics) programme during three years.

Subject	Maximum Marks	Year of Study
Mathematics	100	I and II
Chemistry	100	II and III

Allied Courses offered by the Physics Department to Mathematics and Chemistry Departments

Semester	Part	Study Component	Course Code	Course Title	Hrs	Credit
Ι		Allied Course I	20UPHA11	Allied Physics - I	4	4
II		Allied Course II	20UPHA21	Allied Physics - II	4	4
II / IV		Allied practicals -I	20UPHA2P	Allied Physics Practicals - I	2	2
III	III	Allied Course III	20UPHA31	Allied Physics - III	4	4
IV		Allied Course IV	20UPHA41	Allied Physics - IV	4	4
IV / VI		Allied practicals -II	20UPHA4P	Allied Physics Practicals - II	2	2

Practicals

Record Note Book : 10 marks : 30 marks Internal : 60 marks External examination Total : 100 marks

Value Added Courses

The UG Department of Physics has offered the following Value Added Courses for U.G students

(i) Physics for all

(ii) Sources of Energy

(iii) Optical Sensors

(iv) Electrical Appliances

Extra Credit Self Paced Courses for Advanced Learners

The Department of Physics has offered the following Extra Credit Self Paced Courses to enlighten the advanced learners. The Department persuades students to take virtual courses on MOOCS, SWAYAM and NPTEL.

(i) Trouble Shooting of Electronic Instruments(ii) Household Wiring

(iii) Physics of Biological systems

(iv) Physics of Smart Materials

Programme	B.Sc	Programme Code		UPH	
Course Code	20UPHC11	20UPHC11 Number of Hours/Cycle 3			
Semester	Ι	Max. Marks		100	
Part	III	Credit		3	
	CORE CO	URSE I			
Course Title	MECHANI	CS	L	Т	Р
Cognitive Level	Upto K3		40	3	2
L – Lecture T – Tutorial P – Practical					

Preamble

This course intends to provide the students to have a thorough understanding of the basic concepts of mechanics in physics. It provides the fundamental ideas of projectile motion, impact of elastic bodies, dynamics of rigid body and central of gravity.

Unit I	Projectile Motion	8 Hours		
	Introduction - Path of a projectile - projectile projected			
	horizontally – range on an inclined plane – range and time of			
	flight down on inclined plane – two directions of projection –			
	two body problem and the reduced mass.			
Unit II	Impact of Elastic bodies	8 Hours		
	Impulsive force – collision – types of collision – fundamental			
	principles of impact - elastic collision in one dimension -			
	elastic collision in two or three dimensions in the laboratory			
	frame of reference - elastic collision in two or three			
	dimensions in centre of frame of reference.			
Unit III	Centre of gravity	8 Hours		
	Definition – Distinction between centre of gravity and centre			
	of mass - Centre of gravity of a right solid cone - centre of			
	gravity of a hollow right circular cone – centre of gravity of a			
	solid hemisphere – centre of gravity of a hollow hemisphere.			
Unit IV	Dynamics of Rigid body- I	8 Hours		
	Rigid body – translational and rotational motion - Torque –			
	Angular momentum- Angular impulse - Moment of inertia -			
	Radius of Gyration - Physical Significance of Moment of			
	Inertia – perpendicular axes theorem for a plane laminar body			
	- parallel axes theorem for a plane laminar body.			
Unit V	Dynamics of Rigid body- II	8 Hours		
	Moment of inertia of a hoop - Moment of inertia of a Circular			
	lamina - Moment of inertia of an annular ring - Moment of			
	inertia of a Solid cylinder - Moment of inertia of a Hollow			
	cylinder - Moment of inertia of a Solid Sphere- Moment of			
	inertia of a Hollow Sphere about all axes.			

Pedagogy

These concepts are better understood when lectures are accompanied with chalk and talk method, demonstration, Power Point Presentation and Learning aids.

Text Books

1. Murugeshan.R, (1996), Mechanics and Mathematical Methods, 1st Edition, Sultan Chand and

Company.

Unit – I : Chapter 2: 2.1, 2.2 2.4 – 2.5

- Unit II : Chapter 1: 1.1 1.2
- Unit III : Chapter 3: 3.1 3.6
- 2. Mathur.D.S,(2001), *Mechanics*, Sultan Chand and Company, 2nd Edition.

Unit – II: Chapter 6: 6.6 – 6.7

Unit – IV: Chapter 10: 10.1 – 10.4, 10.7 (I & II) Unit – V: Chapter 10: 10.9 (section - 3, 4, 5, 6, 8, 9, 10, 11)

Reference Books

1. Murugeshan .R,(2006), Mechanics & Relativity, Santha Publications.

2. Halliday.D, Resnick.R and Walker,(1960), *Fundamentals of Physics*,6th Edition, John Wiley and Sons, Inc.

E-Resources

- 1. https://www.tutorialspoint.com/physics_part1/physics_force_and_laws_of_moti on.htm
- https://www.khanacademy.org/science/ap-physics-1/ap-linear-Momentum/inelastic-collisions- and-2d-collisions-ap/v/elastic-and-inelasticcollisions
- 3. https://ocw.mit.edu/high-school/physics/exam-prep/circular-motionrotation/rotational- kinematics-dynamics/
- 4. https://www.nasa.gov/stem-ed-resources/rockets.html

Course Outcomes

At the end of the course, students would be able to

CO1	Demonstrate Projectile motion in detail
CO2	Apply collision principles in one and two dimensions
CO3	Interpret centre of gravity of various objects
CO4	Illustrate the fundamentals of the dynamics of rigid bodies
CO5	Compute the moment of inertia of various objects

Mapping of Programme Specific Outcomes [PSOs] with Course Outcomes [COs]

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	2	3	2	2	1	1	1	1	1	1	2	2
CO2	2	3	2	3	3	2	2	1	1	1	2	2
CO3	2	3	2	3	3	2	2	1	1	1	2	2
CO4	2	3	2	3	3	2	2	1	1	1	2	2
CO5	2	3	2	3	3	2	2	1	1	1	2	2

3 - High . 2 - Moderate. 1- Low

BLUE PRINT – End Semester Examinations

			Secti	on A	Section B	Section C
Units	COs	K-Level	MCQs		Either/ or Choice	Open Choice
			No. Of Questions	K-Level	No. of Question	No.of Question
1	CO1	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
2	CO2	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
3	CO3	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
4	CO4	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
5	CO5	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
No of (Questions	to be asked	10		10	5
No of Questions to be		10		5	3	
Marks for each Question		1		4	10	
Total marks for each Section		10		20	30	

Articulation Mapping - K Levels with Course Outcomes (COs)

K1 – Remembering and recalling facts with specific answers

 $\mathrm{K2}-\mathrm{Basic}$ understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

Distribution of Section –wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without Choice
K1	10	-	-	10	10
K2	-	40	-	40	40
K3	-	-	50	50	50
Total Marks	10	40	50	100	100

	Lesson Plan					
Unit	Projectile Motion	Hours (8)	Mode			

	-> Indus fronting	1	
	a) Introduction	1	
	b) Path of a projectile and projectile	2	Lecture
	projected horizontally.	2	•
	c)Range of a projectile on an inclined plane	1	Group Discussion
Ι	d) range and time of flight of a projectile	1	Lecture With PPT
	d) range and time of flight of a projectile	1	
	down on inclined plane e) two directions of projection of a projectile	2	Lecture With Demo
	e) two directions of projection of a projectile	2	Seminar
	f)two body problem and the reduced mass	1	
Unit	Impact Of Elastic Bodies	Hours (8)	Mode
	a) Impulsive force	1	Lecture
	b) collision and types of collision	1	
	c) fundamental principles of impact	1	Group Discussion
	d) elastic collision in one dimension	1	Lecture With PPT
II	e) elastic collision in two or three		
	dimensions in the laboratory frame of	2	Lecture With Demo
	reference		
	f) elastic collision in two or three		Seminar
	dimensions in the centre of frame of	2	
	reference		
Unit	Centre Of Gravity	Hours (8)	Mode
	a) Definition	1	
	b) Distinction between centre of gravity	1	Lecture With Group
	and centre of mass		Discussion
ш	c) Centre of gravity of a right solid cone	1	
111	d) centre of gravity of a hollow right		Lecture With PPT
	circular cone	2	
	e) centre of gravity of a solid hemisphere	2	Lecture
	f) centre of gravity of a hollow hemisphere	1	Seminar
Unit	Dynamics Of Rigid Body- I	Hours (8)	Mode
Omt	a) Rigid body	1	Lecture
	b) translational and rotational motion	1	Lecture
	c) Torque, Angular momentum and	-	Seminar
	Angular impulse	1	Seminar
	d) Moment of inertia and Radius of Gyration	1	Lecture With PPT
IV	e) Physical Significance of Moment of	2	
	Inertia	_	
	f) perpendicular axes theorem for a plane	1	
	laminar body		
	g) parallel axes theorem for a plane laminar	1	
	body		
Unit	Dynamics Of Rigid Body- II	Hours (8)	Mode
	a) Moment of inertia of a hoop	1	Lecture
	b) Moment of inertia of a Circular lamina	1	
T 7	c) Moment of inertia of an annular ring	1	Group Discussion
V	d) Moment of inertia of a Solid cylinder	1	
	e) Moment of inertia of a Hollow cylinder	1	Lecture With PPT
	f) Moment of inertia of a Solid Sphere	1	
	g) Moment of inertia of a Hollow Sphere	2	Seminar

Course Designed By: 1. Dr. S. Saravanan

2. Mr. R. Jayaraman

Programme	B.Sc	Programme Code	I	UPH		
Course Code	20UPHC12	Number of	3	3		
		Hours/Cycle				
Semester	Ι	Max. Marks	1	100		
Part	III	Credit	3	;		
	CORE	COURSE – II				
Course Title	Properties of Ma	Properties of Matter			Р	
Cognitive Level	Upto K3	Upto K3			2	

L – *Lecture T* – *TutorialP* – *Practical* Preamble

This course would empower the students to acquire skills and practical knowledge, which help the students in their everyday life. The properties of solids especially knowledge of elasticity help the students to identify the materials suitable for the construction of buildings, houses etc. Properties of fluids especially knowledge of viscosity and surface tension help the students in their daily life and agriculture.

Unit I	Gravitation	8 Hours
	Newton's law of gravitation - G by Boy's method -	
	Acceleration due to gravity by compound pendulum - theory	
	– experiment – gravitational potential at a point distant r from	
	a body of mass m - earthquakes - seismic waves and	
	seismographs – seismology and its applications.	
Unit II	Elasticity - I	8 Hours
	Hook's law – types of elasticity - work done per unit volume in a strain – work done per unit volume in a Elongation strain	
	– work done per unit volume in a volume strain – work done	
	per unit volume in a shearing strain – relation connecting the	
	elastic constants - Poisson's ratio - Relations for K and n in	
	terms of Poisson's ratio – determination of Poisson's ratio for	
	rubber.	
Unit III	Elasticity - II	8 Hours
	Twisting couple on a cylinder or a wire - Determination of	
	rigidity modulus of a wire by dynamic torsion method -	
	Bending of Beams - Expression for Bending moment-	
	Determination of Young's modulus by uniform bending-	
	Depression of the loaded end of a Cantilever –Determination	
	of Young's' modulus by Non-uniform bending – I section	
	girders.	
Unit IV	Surface Tension	8 Hours
	Introduction - free energy of a surface and surface tension -	
	work done in blowing a bubble - curvature, pressure and	
	surface tension – Determination of surface tension –Jaeger's	
	method - drop weight method - Interfacial tension -	
	determination of interfacial tension between water and	
T T •4 T 7	kerosene.	0.11
Unit V	Flow of Liquids	8 Hours
	Rate of flow of a fluid – Equation of continuity – energy of	
	liquid – Bernoulli's theorem – Applications of Bernoulli's	
	theorem - Venturi Meter – Pitot tube - Poiseuille's equation	
	for flow of a liquid through horizontal capillary tube	
	(dimensional method).	

Pedagogy

These concepts are better understood when lectures are accompanied with chalk and talk method, demonstration, Power Point Presentation and Learning aids.

Text Books

1. Mathur.D.S.,(2001), *Properties of Matter*, Sultan and Chand Company, 2nd Edition.

Unit – I: Chapter VII - 7.3, 7.6 (iii-a), 7.11, 7.22 -7.24, 7.27 Chapter VI – 6.4

Unit – III: Chapter XIV - 14.6, 14.11, 14.12, 14.24, 14.24.2, 14.24.3, 14.24.5 Unit – IV: Chapter XII - 12.1, 12.3, 12.4, 12.5, 12.6, 12.6(i) &12.6(ii), 12.6(iv), 12.11

Unit – V: Chapter VIII - 8.2, 8.3, 8.8, 8.11, 8.15- 8.17, 8.20

 Murugeshan.R.(2006), *Properties of Matter*, Sultan Chand and Company. Unit – II: Chapter 1: 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.13, 1.14 Unit – III: Chapter 2: Page number 187 & 188

Reference Books

- 1. Chatterjee & Sengupta,(2015), A Treatise on General Properties of matter, New central book agency, NewDelhi.
- 2. Brijlal & Subramaniam.N,(2002), *Properties of Matter*, Sultan Chand and Company.

E-Resources

- 1.https://physics.info/elasticity/
- 2.https://www.usgs.gov/special-topic/water-science-school/science/surfacetension-and-water?qt- science_center_objects=0#qt-science_center_objects 3.https://physics.info/viscosity/

4.https://www.tutorialspoint.com/physics_part1/physics_gravitation.htm

Course Outcomes

At the end of the course, students would be able to

CO1	Apply Newton's Law of gravitation to various systems					
CO2	Demonstrate the different moduli of elasticity					
CO3	Illustrate the concepts of Surface Tension with experimental studies					
CO4	Relate the knowledge of rate of flow of liquids					
CO5	Apply the different types of Elasticity					

Mapping of Programme Specific Outcomes [PSOs] with Course Outcomes [Cos]

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	2	3	2	2	1	1	1	1	1	1	2	2
CO2	2	3	2	3	3	2	2	1	1	1	2	2
CO3	2	3	2	3	3	2	2	1	1	1	2	2
CO4	2	3	2	3	3	2	2	1	1	1	2	2
CO5	2	3	2	3	3	2	2	1	1	1	2	2

3 - High . 2 - Moderate. 1- Low

BLUE PRINT – End Semester Examinations

			Secti	on A	Section B	Section C
Units	COs	K-Level	MCQs		Either/ or Choice	Open Choice
			No. Of Questions	K-Level	No. of Question	No.of Question
1	CO1	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
2	CO2	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
3	CO3	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
4	CO4	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
5	CO5	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
No of (Questions	to be asked	10		10	5
No of Questions to be		10		5	3	
Marks for each Question		1		4	10	
Total r	Total marks for each Section		10		20	30

Articulation Mapping - K Levels with Course Outcomes (COs)

K1 - Remembering and recalling facts with specific answers

K2 - Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

Distribution of Section –wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without Choice
K1	10	-	-	10	10
K2	-	40	-	40	40
K3	-	-	50	50	50
Total Marks	10	40	50	100	100

Lesson Plan

Unit	Gravitation	Hours (8)	Mode	
	a) Newton's law of gravitation	1		
	b) G by Boy's method	1		
Ŧ	c) Acceleration due to gravity by compound pendulum theory and experiment	2	Lecture Lecture With Demo	
1	d) gravitational potential at a point distant r from a body of mass m	2	Lecture With PPT	
	e)earthquakes, seismic waves, seismographs ,seismology and its applications.	2		
Unit	Elasticity - I	Hours (8)	Mode	
	a) Hook's law	1		
Π	b) types of elasticity, work done per unit volume in a strain	1		

	c) work done per unit volume in a Elongation strain	1	Lecture
	d) work done per unit volume in a volume strain	1	Lecture With Demo
	e)work done per unit volume in a shearing strain	1	Group Discussion
	f) relation connecting the elastic constants	1	
	g) Poisson's ratio, Relations for K and n in terms of Poisson's ratio	1	
	h) determination of Poisson's ratio for rubber	1	
Unit	Elasticity - II	Hours (8)	Mode
	a) Twisting couple on a cylinder or a wire	1	
	b) Determination of rigidity modulus of a wire by dynamic torsion method	1	Lecture
	c) Bending of Beams, Expression for Bending moment-	1	Lecture With Demo
III	d) Determination of Young's modulus by uniform bending	2	Group Discussion
	e) Depression of the loaded end of a Cantilever	1	
	f) Determination of Young's' modulus by Non-uniform bending	1	
	g) I section girders.	1	
Unit	Surface Tension	Hours (8)	Mode
	a) Introduction – free energy of a surface and surface tension	1	
	b) work done in blowing a bubble, curvature, pressure and surface tension	2	Lecture
TT 7	c) Determination of surface tension , Jaeger's method and drop weight method	3	Lecture With PPT
IV	d) Interfacial tension, determination of interfacial tension between water and kerosene.	2	Seminar
Unit	Flow Of Liquids	Hours (8)	Mode
	a)Rate of flow of a fluid	1	
	b) Equation of continuity , energy of	1	Lecture
•		-	1
			Group Disquesion
	c) Bernoulli's theorem,		Group Discussion
	liquid	2	Group Discussion Seminar
V	liquid c) Bernoulli's theorem,	2	

Course Designed By:

- 1. Dr. K. Ramavenkateswari
- 2. Dr. K. Jayabala

0UPHA11	Number of Hours/Cycle Max. Marks	4 100			
	Max. Marks	100			
		100			
I	Credit	4			
A	LLIED COURSE - I				
llied Physic	cs – I		L	Т	Р
Upto K3			54	3	3
_	A llied Physic pto K3	ALLIED COURSE - I llied Physics – I	ALLIED COURSE - I llied Physics – I pto K3	ALLIED COURSE - Illied Physics – ILpto K354	ALLIED COURSE - Illied Physics – ILTpto K3543

L-Lecture T-Tutorial P-Practical

Preamble

To make the students to understand the Law of Gravitation, Cavendish's method to determine G, concepts of earthquakes, seismic waves, seismographs, concepts of bending of beams, surface tension for various methods, rate of flow of fluid and Moment of Inertia of various laminas.

	Newton's law of gravitation- G by Boy's method -	
	Acceleration due to gravity by compound pendulum -	
	theory - experiment - earthquakes - seismic waves and	
	seismographs – seismology and its applications.	
Unit II	Elasticity	11 Hours
	Twisting couple on a cylinder or a wire - Determination of	
	rigidity modulus of a wire by dynamic torsion method -	
	Bending of Beams - Expression for Bending moment-	
	Determination of Young's modulus by uniform bending-	
	Depression of the loaded end of a Cantilever – Determination of Young's' modulus by Non-uniform	
	bending – I section girders.	
Unit III	Surface Tension	10 Hours
	Introduction – free energy of a surface and surface tension -	
	work done in blowing a bubble –Determination of surface	
	tension - drop weight methodInterfacial tension -	
	determination of interfacial tension between water and	
	kerosene.	
Unit IV	Flow of Liquids	11 Hours
	Rate of flow of a fluid – Equation of continuity – energy of	
	liquid - Bernoulli's theorem -Applications of Bernoulli's	
	theorem - Venturi meter - Pitot tube - Poiseuille's	
	equation for flow of a liquid through horizontal capillary	
	tube (Dimensional method).	
Unit V	Dynamics of Rigid body	11 Hours
	Moment of inertia of a hoop - Moment of inertia of a	
	Circular lamina – Moment of inertia of an annular ring -	
	Moment of inertia of a Solid cylinder - Moment of inertia	
	of a Hollow cylinder - Moment of inertia of a Solid Sphere.	

Pedagogy

These concepts are better understood when lectures are accompanied with chalk and talk method, demonstration, Power Point Presentation and Learning aids.

Text Books

1. Mathur.D.S.,(2001), *Properties of Matter*, Sultan and Chand Company, 2ndEdition.

Unit – I: Chapter VII - 7.3, 7.6 (iii-a), 7.22 -7.24, 7.27 Chapter VI – 6.4 Unit – III: Chapter XIV - 14.6, 14.11, 14.24, 14.24.2, 14.24.3, 14.24.5 Unit – IV: Chapter XII - 12.1, 12.3, 12.4, 12.5, 12.6, 12.6(i) &12.6(ii), 12.6(iv), 12.11 Unit – V: Chapter 10: 10.9 (section - 3, 4, 5, 6, 8, 9, 10)

2. Murugeshan.R.(2006), *Properties of Matter*, Sultan Chand and Company. Unit – II: Chapter 1: 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.13, 1.14

Reference Books

- Chatterjee & Sengupta,(2015), A Treatise on General Properties of matter, New central book agency, NewDelhi.
- 2. Brijlal & Subramaniam.N.,(2002), *Properties of Matter*, Sultan Chand and Company.

E-Resources

- 1. https://www.tutorialspoint.com/physics_part1/physics_gravitation.htm
- 2. http://www.propertiesofmatter.si.edu/contents.html

Course Outcomes

At the end of the course, students would be able to

CO1	Apply Newton's Law of gravitation to various systems
CO2	Demonstrate the different types of bending
CO3	Illustrate the concepts of Surface Tension with experimental studies
CO4	Apply the knowledge of rate of flow of liquids
CO5	Compute the moment of inertia of various objects

Mapping of Programme Specific Outcomes [PSOs] with Course Outcomes [Cos]

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	2	3	2	2	1	1	1	1	1	1	2	2
CO2	2	3	2	3	3	2	2	1	1	1	2	2
CO3	2	3	2	3	3	2	2	1	1	1	2	2
CO4	2	3	2	3	3	2	2	1	1	1	2	2
CO5	2	3	2	3	3	2	2	1	1	1	2	2

3 - High . 2 - Moderate. 1- Low

BLUE PRINT – End Semester Examinations

			Secti	on A	Section B	Section C
Units	COs	K-Level	MCQs		Either/ or Choice	Open Choice
			No. Of Questions	K-Level	No. of Question	No.of Question
1	CO1	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
2	CO2	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
3	CO3	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
4	CO4	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
5	CO5	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
No of C	No of Questions to be asked		10		10	5
No of Questions to be		10		5	3	
Marks for each Question		1		4	10	
Total r	narks for	each Section	10		20	30

Articulation Mapping - K Levels with Course Outcomes (COs)

K1 – Remembering and recalling facts with specific answers

K2 – Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

Distribution of Section –wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without Choice
K1	10	-	-	10	10
K2	-	40	-	40	40
K3	-	-	50	50	50
Total Marks	10	40	50	100	100

Lesson Plan

Unit	Gravitation	Hours (11)	Mode
	a) Newton's law of gravitation	2	
	b) G by Boy's method	2	Lecture
I	c) Acceleration due to gravity by compound pendulum theory and experiment	4	Lecture With Demo
	d) Earth quakes, seismic waves, seismographs, seismology and its applications.	3	Lecture With PPT
Unit	Elasticity	Hours (11)	Mode
	a) Twisting couple on a cylinder or a	2	
II	wire.		Lecture With Demo

	b) Determination of rigidity modulus of a wire by dynamic torsion method.	2	
	c) Bending of Beams, Expression for Bending moment.	1	Lecture
	d) Determination of Young's modulus by uniform bending.	2	
	e) Depression of the loaded end of a Cantilever.	1	
	f) Determination of Young's' modulus by Non-uniform bending	2	
	g) I section girders.	1	
Unit	Surface Tension	Hours (10)	Mode
	a) Introduction – free energy of a surface	2	
	and surface tension	2	
	b) work done in blowing a bubble	2	
ш	c) Determination of surface tension by	2	
111	drop weight method	3	Lecture
	d) Interfacial tension, determination of		Lecture With Demo
	interfacial tension between water and	3	
	kerosene.	5	
Unit	Flow Of Liquids	Hours (11)	Mode
	a)Rate of flow of a fluid	1	
	b) Equation of continuity, energy of	1	
	liquid		Lecture
1	c) Bernoulli's theorem,	2	T (TTT) 1
IV	Applications of Bernoulli's theorem	3	Lecture With
IV		3	Lecture With Model
IV	Applications of Bernoulli's theorem		
IV	Applications of Bernoulli's theorem d) Venturi meter	2	
IV	Applications of Bernoulli's theorem d) Venturi meter e) Pitot tube	2 2	
IV	 Applications of Bernoulli's theorem d) Venturi meter e) Pitot tube f) Poiseuille's equation for flow of a 	2 2	
IV Unit	 Applications of Bernoulli's theorem d) Venturi meter e) Pitot tube f) Poiseuille's equation for flow of a liquid through horizontal capillary tube 	2 2	
	 Applications of Bernoulli's theorem d) Venturi meter e) Pitot tube f) Poiseuille's equation for flow of a liquid through horizontal capillary tube (Dimensional method) 	2 2 2	Model
	 Applications of Bernoulli's theorem d) Venturi meter e) Pitot tube f) Poiseuille's equation for flow of a liquid through horizontal capillary tube (Dimensional method) Dynamics Of Rigid Body 	2 2 2 Hours (11)	Model
	Applications of Bernoulli's theoremd) Venturi metere) Pitot tubef) Poiseuille's equation for flow of aliquid through horizontal capillary tube(Dimensional method)Dynamics Of Rigid Bodya)Moment of inertia of a hoop	2 2 2 Hours (11) 2	Model
Unit	Applications of Bernoulli's theoremd) Venturi metere) Pitot tubef) Poiseuille's equation for flow of aliquid through horizontal capillary tube(Dimensional method)Dynamics Of Rigid Bodya)Moment of inertia of a hoopb)Moment of inertia of a Circular lamina	2 2 2 Hours (11) 2 2	Model Mode
Unit	Applications of Bernoulli's theoremd) Venturi metere) Pitot tubef) Poiseuille's equation for flow of aliquid through horizontal capillary tube(Dimensional method)Dynamics Of Rigid Bodya)Moment of inertia of a hoopb)Moment of inertia of a Circular laminac) Moment of inertia of an annular ring	2 2 2 Hours (11) 2 2 2 2	Model

Course Designed By:

Dr. T.Rajesh Kumar
 Dr. P.Uma Mageshwari

Programme	B.A./B.Sc /B.Com Programme Code UPH				
Course Code	20UPHN11	20UPHN11 Number of Hours/Cycle 2			
Semester	Ι	I Max. Marks 50			
Part	IV Credit 2				
	NON MAJOI	R ELECTIVE – I	•		
Course Title	Physics in everyda	Physics in everyday life – I L		Т	Р
Cognitive Level	K1& K2 24		4	3	3

L – Lecture T – TutorialP – Practical

Preamble

To make the students to understand the basic concepts of Physics in everyday life such as earth's Atmoshere, Human Body, Sports, Technique and Imaging to students studying other than Physics.

Unit I	Physics in Earth's Atmosphere	5 Hours
	Sun – Earth's Atmosphere as an ideal gas –Pascal's law –	
	Archimede's Principle – corioli's acceleration– Rayleigh	
	scattering - red sunset - reflection - refraction -	
	dispersion of light – total internal reflection – rainbow.	
Unit II	Physics in Human Body	5 Hours
	The eyes as an optical instrument – vision defects –	
	Rayleigh criterion and resolving power – sound waves	
	and hearing – sound intensity – decibel scale .	
Unit III	Physics in sports	5 Hours
	Introduction — dynamics of rotating objects – running –	
	Long jump and pole vaulting – motion of a spinning ball	
	-bernoulli's equation - banana shot - magnus force.	
Unit IV	Physics in technology	4 Hours
	Global Positioning System (GPS) - CD player -	
	electricmotors – telescope – microscope -projector	
Unit V	Physics in imaging	5 Hours
	Introduction to medical imaging – ultra sound imaging –	
	X-Ray and X-ray CT imaging – Positron Emission	
	Tomography (PET) – MRI.	

Pedagogy

These concepts are better understood when lectures are accompanied with chalk and talk method, demonstration, Power Point Presentation and Learning aids.

Text Book

1. F.W. Sears, M.Zeemansky, R.A. Freedman, and H.D. Young, *University Physics*, Pearson Education

Reference Books

1. Louis A. Bloomfield, (2007), *How Everything Works Making Physics Out Of The*

Ordinary, University of Virgina, ,John Willey & sons

 Halliday.D, Resnick.R and Walker,(1960), *Fundamentals of Physics*, 6th Edition, John Wiley and Sons, Inc.

E-Resources

1. https:// physics in everyday life/blog.schoolspeciality.com/

2. https://en.m.wikipedia.org/wiki/physics in everyday life

Course Outcomes

At the end of the course, students would be able to

CO1	Define the basic concepts of Earth's Atmosphere and Weather systems
CO2	Discuss the optical instrument and decibel scale
CO3	Classify the various sports
CO4	Recall the techniques of Physics
CO5	Explain the medical imaging

BLUE PRINT – End Semester Examinations

Articulation Mapping - K Levels with Course Outcomes (COs)

			Section A	Α	Section B
Units	Units COs K-Level Eith		Either/ or (Choice	Open Choice
			No. Of Questions	K-Level	No. of Question
1	CO1	Up to K3	2	K1	1 (K2)
2	CO2	Up to K3	2	K1	1 (K2)
3	CO3	Up to K3	2	K1	1 (K2)
4	CO4	Up to K3	2	K1	1 (K2)
5	CO5	Up to K3	2	K1	1 (K2)
No of Qu	No of Questions to be asked		10		5
No of Questions to be answered		5		3	
Marks for each Question		3		5	
Total ma	arks for e	ach Section	30		25

K1 – Remembering and recalling facts with specific answers

K2 – Basic understanding of facts and stating main ideas with general answers

Distribution of Section –wise Marks with K Levels

K Levels	Section A (Either/or)	Section B (Open Choice)	Total Marks	% of Marks without Choice
K1	10	-	30	54.5
K2		5	25	45.5
Total Marks	30	25	55	100

	Lesson Pla	an	
Unit	Physics In Earth's Atmosphere	Hours (5)	Mode
	a) Sun, Earth's Atmosphere as an ideal gas	1	
	b) Pascal's law, Archimede's Principle, corioli's acceleration	1	
I	 c) Rayleigh scattering, red sunset, reflection, refraction dispersion of light, d) Total internal reflection and 	2	Lecture
	rainbow.	1	
Unit	Physics In Human Body	Hours (5)	Mode
	a)The eyes as an optical instrument , vision defects	1	
II	b) Rayleigh criterion and resolving power	1	Lecture
	c)sound waves and hearing	1	Lecture With PPT
	d) sound intensity, decibel scale	2	
Unit	Physics In Sports	Hours (5)	Mode
	a) Introduction	1	
ш	b) dynamics of rotating objects , running , Long jump and pole vaulting	2	Lecture
m	c) motion of a spinning ball , bernoulli's equation ,banana shot , magnus force.	2	Lecture With Demo
Unit	Physics In Technology	Hours (4)	Mode
	a) Global Positioning System (GPS)	2	
IV	b)CD player, electric motors	1	Lecture With PPT
	c) telescope, microscope and projector	1	Lecture
Unit	Physics In Imaging	Hours (5)	Mode
	a) Introduction to medical imaging	1	
V	b) ultra sound imaging , X-Ray and X-ray CT imaging	2	Lecture With PPT
	c) Positron Emission Tomography (PET) and MRI	2	Lecture

Course Designed By

- 1. Dr. T.Rajesh Kumar
- 2. Dr. P.Uma Mageshwari

Programme	All	Programme Code	UPH

Course Code	20UVEV11	Number of Hours	/Cycle	2	
Semester	Ι	Max. Marks		50	
Part	IV	Credit		2	
		VALUE EDUCATI	ON		
Course Title	Value Education	L	Т	Р	
Cognitive Level	Upto K3	27	3	_	

L – Lecture T – Tutorial P – Practical

Preamble

This course aims to develop the students in all dimensions so that they can be the better citizens of this nation with more social responsibility and patriotism.

Unit I	Values and Individual	6 hours
	Values meaning – the Significance of values – Classification of values – Needs of value education – Values and the individual; self- discipline, self-confidence, self-initiative, empathy, compassion, forgiveness, honesty and courage.	
Unit II	Values and Religion	5 hours
	Karma Yoga in Hinduism – Ahimsa in Jainism – Compassion in Buddhism – Love and justice in Christianity – Universal Brotherhood in Islam – Selfless service in Sikhism – Need for religious harmony.	
Unit III	Values and Society	5 hours
	Definition of Society – Democracy – Secularism – Socialism – Gender justice human rights – Socio political awareness – Social integration – Social justice	
Unit IV	Professional Values	5 hours
	Definition – Accountability – Willingness to learn – Team spirit – Competence development – Honesty – Transparency – Respecting others – Democratic functioning – Integrity and commitment.	
Unit V	Role of Social Institutions in Value formation and Constitutional Values	6 hours
	Role of family, peer group – Society – Educational institutions – Role models – Swami Vivekananda – Mahatma Gandhi – Martin Luther King – Mother Teresa and mass media in value formation – dignity of the individual – Unity and integrity of the nation – International peace.	

Text Book

1. Saravanan. P, Andichamy.P, (2011), *Value Education*, Merit India Publications, Madurai.

Reference Books

- 1. Murugeshan.R, (2015), *Value Education*, Millennium Publishers & Distributors, Madurai.
- 2. Subramanyam. K, (2002), Value Education (Socio-Spiritual), Sri Ramakrishna

Tapovanam, Trichy.

- 3. "Complete Works of Swami. Vivekananda", Sri Ramakrishna Mutt, Chennai
- 4. M.K. Gandhi, (2019), *An Autobiography or The Story of My Experiment with Truth*, Navajeevan Publication, Ahmadabad.
- 5. Jeyapragasam.S,(2006), World Religions, CEPCHIRA, Madurai.

Course Outcomes

After completion of this course, the students would be able to

CO1	Trace their personality and social values based on the principles of human values
CO2	Relate a sense of Love, Peace and Brotherhood at the local, national and international level
CO3	Identify the social realities and inculcate essential value system towards building a healthy society
CO4	Employ the knowledge of professional values in life
CO5	Associate the role in social institutions, family and constitutional values

Mapping of Programme specific outcomes with Course Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	0	0	0	0	0	0	0	0	2	1	2	2
CO2	0	0	0	0	0	0	0	0	2	1	2	2
CO3	0	0	0	0	0	0	0	0	2	1	2	2
CO4	0	0	0	0	0	0	0	0	2	1	1	1
CO5	0	0	0	0	0	0	0	0	2	1	2	2

3 - High . 2 - Moderate. 1- Low

BLUE PRINT – End Semester Examinations

			Section	Section B Open choice	
Units	Cos	K-Level	Either/or Choice		
			No. of Questions	K-Level	No. of Questions
1	CO1	Up to K2	2	K1 & K2	K2
2	CO2	Up to K2	2	K1 & K2	K2
3	CO3	Up to K3	2	K1 & K2	К3
4	CO4	Up to K2	2	K1 & K2	K2
5	CO5	Up to K3	2	K1 & K2	K3
No. of Questions to be asked			10		5
No. of Questions to be answered			5		3
Marks for each Question			3		5
Total Marks fo	or each Section		30		25

Articulation Mapping-K Levels with Course Outcomes (COs)

K1-Remembering and recalling facts with specific answers

K2-Basic understanding of facts and stating main ideas with general answers

K3-Application oriented-Solving problems

Distribution of Section-wise Marks and K Level

K Levels	Section A (Either/or)	Section B (Open choice)	Total Marks	% of Marks without choice	Consolidated marks (Rounded off)
K1	15	-	15	27.2	27
K2	15	15	30	54.5	55
K3	-	10	10	18.1	18
Total Marks	30	25	55	100	100%

Lesson Plan

Unit	Values And Individual	Hours (6)	Mode
	a)Values meaning, the Significance of values and Classification of values	2	
I	b)Needs of value education , Values and the individual, self- discipline,self confidence,	2	Lecture With PPT
	c)self-initiative,empathy, compassion,forgiveness, honesty and courage.	2	Lecture
Unit	Values And Religion	Hours (5)	Mode
	a)Karma Yoga in Hinduism	1	
	b)Ahimsa in Jainism Compassion Buddhism	Lecture With PPT	
п	c)Love and justice in Christianity d)Universal Brotherhood in Islam	1	Lecture
	e)Selfless service in Sikhism, Need for religious harmony.	1	
Unit	Values And Society	Hours (5)	Mode
	a)Definition of Society Democracy , Secularism and Socialism –	2	
ш	b) Gender justice human rights,Socio political awareness	1	Lecture
	c) Social integration and Social justice	2	
Unit	Professional Values	Hours (5)	Mode
IV	a)Definition, Accountability, Willingness to learn , Team spirit	1	Lecture With PPT

	b)Competence development, Honesty and Transparency	2	Lecture
	c) Respecting others, Democratic functioning, Integrity and commitment.	2	Lecture
Unit	Role Of Social Institutions In Value Formation And Constitutional Values	Hours (6)	Mode
	a)Role of family, peer group and Society	1	
	b)Educational institutions ,Role models	1	Lecture
V	c)Swami Vivekananda ,Mahatma Gandhi	2	Lecture With PPT
	d)Martin Luther King ,Mother Teresa and mass media in value	2	

Course Designed By

- Dr. J.Sathyabama
 Dr. M.Inbalakashmi

Programme	B.Sc	B.Sc Programme Code			UPH			
Course Code	20UPHC21	Number of Hou	rs/Cycle	3				
Semester	II	Max. Marks		100				
Part	III	Credit		3				
	CC	DRE COURSE - I	II					
Course Title	Thermal P	hysics L		Т	Р			
Cognitive Level	Upto K3		40	3	2			

L-Lecture T-Tutorial P-Practical

Preamble

This course make the students to understand the phenomena connected with various units of measurement of temperature, knowing the concept of specific heat capacities of matter, transmission of heat, liquefying gases and process of making heat to do mechanical work. This paper also deals with kinetic theory of matter, transport phenomena in gases, laws of thermodynamics, concept of entropy and thermodynamical relations which form the basis of thermodynamical behaviour of the three states of matter.

Unit I	Calorimetry	8Hours
	Specific heat capacity of solids - Regnault's method of	
	mixtures(solid) - Specific heat capacity of liquids -	
	Calendar and Barnes method - Specific heat capacity of	
	gases - Cp and Cv - Meyer's relation - Cv by Joly's	
	differential steam calorimeter method - Cp by Regnault's	
	method.	
Unit II	Transmission of Heat	8 Hours
	Conduction – Coefficient of Thermal Conductivity –Lee's	
	disc method of determination of thermal conductivity of a	
	bad conductor- Convection - Newton's law of cooling -	
	Determination of specific heat capacity of liquid -	
	Radiation - Black body - Kirchhoff's law - Stefan -	
	Boltzmann law - Energy distribution in black body	
	spectrum - Wien's law - Rayleigh Jean's law- Planck's	
	law.	
Unit III	Kinetic Theory of Gases	8 Hours
	Kinetic Theory of gases- assumptionsmean free path -	
	expression for mean free path - Transport phenomenon -	
	expression for Diffusion, Viscosity and Thermal	
	conductivity of gasVander walls equation of state -	
	Determination of Vander walls constant - Relation	
	between Vander Wall's constant and critical constants.	
Unit IV	Thermodynamics	8 Hours
	Zeroth and first law of thermodynamics - reversible and	
	irreversible processes – isothermal process-adiabatic	
	process-gas equation during isothermal and adiabatic	
	process - work done during isothermal and adiabatic	
	process - second law of thermodynamics - Entropy -	
	change of entropy in reversible and irreversible processes -	
	change of entropy when ice converted into steam - third	
	law of thermodynamics.	
Unit V	Low Temperature Physics	8 Hours
	Joule - Kelvin effect - Liquefaction of Air-Linde's Process -	
	liquefaction of hydrogen - liquefaction of helium-	
	Kammerling - Onne's method - Helium I and II - Lambda	
	point - production of low temperatures - adiabatic	
	demagnetization - practical applications of low temperature.	

Pedagogy

These concepts are better understood when lectures are accompanied with chalk and talk method, demonstration, Power Point Presentation and Learning aids.

Text Book

1. Brijlal and Subramanyam ,(2012), *Heat and Thermodynamics and Statistical Physics*, Sultan Chand and Company,14th Edition ,New Delhi.

Unit I: Chapter 13 & 14: 13.15, 13.23, 14.2, 14.6, 14.7, 14.11, 14.12, Unit II: Chapter 8, 14 &15: 15.1, 15.11, 15.22, 14.5, 14.6, 14.7, 8.6, 8.7, 8.8, 8.9, 8.10,8.12, 8.13, 8.14, 8.15, 8.17 Unit III Chapter 1, 2 & 3: 1.3, 3.2, 3.5, 3.7, 3.16,3.8, 3.11, 2.8, 2.10, 2.11, 2.12, Unit IV: Chapter 4 & 5: 4.2, 4.7, 4.20, 4.12, 4.13, 4.28, 5.1,5.2, 5.3, 5.4, 5.15 Unit V: Chapter 2 & 7: 2.24, 7.8, 7.10, 7.11, 7.12, 7.13, 7.14, 7.15, 7.16, 7.21

Reference Books

1. Rajam. J.B.,(1985), *Heat & Thermodynamics*, Sultan Chand and Company, New Delhi.

2. Narayanamoorthy.M.and Nagarathinam .N,(1987), *Heat*, National publishing Company, EighthEedition,Chennai.

3. Murugeshan.R ,(2004), *Thermal Physics*, Sultan Chand and Company, New Delhi.

E-Resources

- 1. http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
- 2. https://nptel.ac.in/
- 3. https://www.physicsclassroom.com/class/thermalP/Lesson-2/Calorimeters-and-Calorimetry
- 4. https://aip.scitation.org/ltp/info/focus

Course Outcomes:

At the end of the course, students would be able to

CO1	Experiment with the methods to determine the Specific heat capacities of Solids, liquids and gases
CO2	Make use of the laws of conduction, convection and radiation
CO3	Solve the kinetic theory of gases and transport phenomena
CO4	Make use of the laws of thermodynamics and apply the concepts of Entropy
CO5	Apply the liquefaction methods for various gases

Mapping of Programme Specific Outcomes [PSOs] with Course Outcomes [Cos]

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	2	3	2	2	2	2	1	1	2	1	1	1
CO2	2	3	2	2	2	2	1	1	2	1	1	1
CO3	2	2	1	1	2	1	1	1	2	1	1	1
CO4	2	2	1	1	2	2	2	2	2	1	1	1
CO5	2	2	1	1	1	1	1	1	2	1	1	1

3 - High . 2 - Moderate. 1- Low

BLUE PRINT – End Semester Examinations

			Secti		Section B	Section C
Units	COs	K-Level	мс	CQs	Either/ or Choice	Open Choice
			No. Of Questions	K-Level	No. of Question	No.of Question
1	CO1	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
2	CO2	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
3	CO3	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
4	CO4	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
5	CO5	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
No of C	Questions	to be asked	10		10	5
No of (No of Questions to be		10		5	3
Marks	Marks for each Question		1		4	10
Total r	narks for	each Section	10		20	30

Articulation Mapping - K Levels with Course Outcomes (COs)

- K1 Remembering and recalling facts with specific answers
- $\mathrm{K2}-\mathrm{Basic}$ understanding of facts and stating main ideas with general answers
- K3 Application oriented Solving problems

Distribution of Section –wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without Choice
K1	10	-	-	10	10
K2	-	40	-	40	40
K3	-	-	50	50	50
Total Marks	10	40	50	100	100

Lesson Plan

Unit	Calorimetry	Hours (8)	Mode
	a) Specific heat capacity of solids	1	
	b)Regnault's method of mixtures(solid)	1	
	c) Specific heat capacity of liquids	2	Lecture With Demo
	,Calendar and Barnes method		
Ι	d) Specific heat capacity of gases ,Cp and	1	
	Cv	1	Lecture
	e) Meyer's relation	1	
	f) Cv by Joly's differential steam calorimeter method	1	Lecture With Ppt
	g) Cp by Regnault's method.	1	
Unit	Transmission Of Heat	Hours (8)	Mode
Cint	a) Conduction and Coefficient of Thermal	1	
	Conductivity	1	
	b) Lee's disc method of determination of	2	
	thermal conductivity of a bad conductor	2	
	c) Convection, Newton's law of cooling,	2	
II	Determination of specific heat capacity of	2	Lecture With Demo
	liquid		
	_	2	Lecture
	d) Radiation , Black body , Kirchhoff's law ,Stefan Boltzmann law , Energy	3	
	distribution in black body spectrum		
	,Wien's law, Rayleigh Jean's law and		
	Planck's law.		
Unit	Kinetic Theory Of Gases	Hours (8)	Mode
	a)Kinetic Theory of gases- and its	1	
	assumptions		
	b)mean free path ,expression for mean free		
	path and Transport phenomenon	2	
	c) expression for Diffusion, Viscosity	_	
	and Thermal conductivity of gas	2	Lecture
III	d)Vander walls equation of state and	1	
Unit	Determination of Vander walls constant		I A WADA
	e) Relation between Vander Wall's	2	Lecture With Ppt
	constant and critical constants		
Unit	Thermodynamics	Hours (8)	Mode
	a)Zeroth and first law of thermodynamics	2	
	b) reversible, irreversible isothermal and	2	
	adiabatic process		
	c) gas equation during isothermal and	1	-
IV	adiabatic process	1	Lecture
4 7	d)work done during isothermal and	2	
	adiabatic process , second law of	2	Locture With Det
	thermodynamics		Lecture With Ppt
	e) Entropy , change of entropy in	1	
TT:4	reversible and irreversible processes	H orra (9)	Mala
Unit	Low Temperature Physics	Hours (8)	Mode
	a) Joule, Kelvin effect b)Liquefaction of Air, Linde's Process	1	
	nu jalietaction of Air Linde's Process	1	
	c) liquefaction of hydrogen, liquefaction		

V	d) Helium I and II , Lambda point , production of low temperatures	1	Lecture With Ppt
	e) adiabatic demagnetization ,Practical applications of low temperature.	1	
	f) change of entropy when ice converted into steam and third law of thermodynamics.	2	

Course Designed By

- 1. Dr. S.Saravanan
- 2. Mr. R. Jayaraman

Programme	B.Sc	Programme Code	U	UPH			
Course Code	20UPHC22	Number of Hours/Cycle	3				
Semester	II	Max. Marks	1	100			
Part	III	Credit	3				
	COR	E COURSE – IV					
Course Title	Geometrical	Optics and Acoustics		L	Т	Р	
Cognitive level	Upto K3	Upto K3				2	

L-Lecture T-Tutorial P-Practical

Preamble

This course aims to bring the students the knowledge about Geometrical optics and Acoustics. It deals with the concepts of dispersion, lens aberrations, optical instruments, interference of sound, acoustics and ultrasonics.

Unit I	Dispersion	8 Hours
	Refraction through a prism - Dispersion by a prism- angular	
	dispersion – dispersive power – angular and chromatic	
	dispersions – achromatic combination of prisms – deviation	
	without dispersion – dispersion without deviation – direct	
	vision spectroscope.	
Unit II	Lens Aberrations	8 Hours
	Aberrations – spherical aberration – aplanatic points –	
	chromatic aberration – chromatic aberration in a lens-	
	expression for longitudinal chromatic aberration for an	
	object at finite distance – achromatic lenses – condition for	
	achromatism of two lenses in contact - condition for	
	achromatism of two lenses separated by a distance.	
Unit III	Optical Instruments	8 Hours
	Objective and Eyepiece – Kellner's Eyepiece – Huygen's	
	Eyepiece – Ramsden Eyepiece – Comparison of Ramsden	
	Eyepiece with Huygen's Eyepiece – Compound Microscope	
	– Telescopes – Refracting Astronomical telescope -	
	Reflecting Telescope.	
Unit IV	Interference of sound	8 Hours
	Interference of sound waves – condition for interference of	
	sound waves - energy distribution due to interference of	
	sound waves – quincke's tube – beats – analytical treatment	
	of beats – combination tones – Helmholtz resonator.	
Unit V	Acoustics and ultrasonics	8 Hours
	Acoustics - reverberation – Sabine's formula – factors	
	affecting the acoustics of buildings – sound distribution in an	
	auditorium - requisites for good acoustics - ultrasonics -	
	production of ultrasonics – piezoelectric oscillator –	
	detection of ultrasonic waves – applications of ultrasonic	
	waves.	

Pedagogy

These concepts are better understood when lectures are accompanied with chalk and talk method, demonstration, Power Point Presentation and Learning aids.

Text Books

1. Brijlal and Subramanyam, (2010), *A Text Book Of Optics*, Sultan Chand and Company, 24th Edition ,New Delhi.

Unit I: Chapter 8: 8.1-8.8
Unit II: Chapter 9: 9.1, 9.2, 9.5, 9.6, 9.6.1, 9.10, 9.11, 9.11a, 9.11b, 9.13, 9.13(1,2)
Unit III: Chapter 10: 10.3, 10.3.1, 10.8, 10.9, 10.10, 10.11, 10.12, 10.13, 10.14, 10.15, 10.15.1, 10.16, 10.16.1

2. Brijlal and Subramanyam, (1992), *Waves and Oscillations*, Vikas Publishing House Private Limited, 2nd Edition ,New Delhi.

Unit IV: Chapter 6: 6.6- 6.15 Unit V: Chapter 11: 11.14, 11.15, 11.16, 11.20, 11.21, 11.22, 11.23, 11.24, 11.24.3, 11.25, 11.27

Reference Books

- 1. Ajoy Ghatak , (2006), *Optics*, Tata Mcgraw Hill Publishing Company Limited, , 3^{rd} Edition ,New Delhi
- 2. Murugeshan.R, Kiruthiga Sivaprasath, (2010), Optics and Spectroscopy , Sultan Chand and Company, Revised Edition ,New Delhi.

E-Resources

- 1. https://blossoms.mit.edu/resources/physics_resources
- 2. https://micro.magnet.fsu.edu/optics/webresources/index.html
- 3. http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
- 4. https://phys.libretexts.org

Course Outcomes

At the end of the course, students would be able to

CO1	Identify the laws of refraction, reflection and the terminology of prisms
CO2	Organize the kinds of aberrations
CO3	Relate the various types of optical instruments
CO4	Illustrate the interference of sound waves
CO5	Write the acoustics and sabine's formula

Mapping of Programme Specific Outcomes [PSOs] with Course Outcomes [Cos]

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	2	3	2	2	2	2	1	1	2	1	1	1
CO2	2	3	2	2	2	2	1	1	2	1	1	1
CO3	2	2	1	1	2	1	1	1	2	1	1	1
CO4	2	2	1	1	2	2	2	2	2	1	1	1
CO5	2	2	1	1	1	1	1	1	2	1	1	1

^{3 -} High . 2 - Moderate. 1- Low

BLUE PRINT – End Semester Examinations

			Secti		Section B	Section C	
Units	COs	K-Level	мс	CQs	Either/ or Choice	Open Choice	
			No. Of Questions	K-Level	No. of Question	No.of Question	
1	CO1	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)	
2	CO2	Up to K3	2 K1&K1		2 (K2&K2)	1 (K3)	
3	CO3	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)	
4	CO4	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)	
5	CO5	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)	
No of C	No of Questions to be asked		10		10	5	
No of Questions to be			10		5	3	
Marks for each Question			1		4	10	
Total marks for each Section			10		20	30	

Articulation Mapping - K Levels with Course Outcomes (COs)

- K1 Remembering and recalling facts with specific answers
- $\mathrm{K2}-\mathrm{Basic}$ understanding of facts and stating main ideas with general answers
- K3 Application oriented Solving problems

Distribution of Section –wise Marks with K Levels

K Levels	Section A (NoChoice)	Section B (Either/or)	Section C (OpenChoice)	Total Marks	% of Marks without Choice
K1	10	-	-	10	10
K2	-	40	-	40	40
K3	-	-	50	50	50
Total Marks	10	40	50	100	100

Lesson Plan

Unit	Dispersion	Hours (8)	Mode	
	a) Refraction through a prism, dispersion by a prism	1		
	b) angular dispersion, dispersive power, angular and chromatic dispersions	2		
I	c) achromatic combination of prisms	1	Lecture Seminar	
	d)deviation without dispersion	2		
	e)dispersion without deviation	1		
	f) direct vision spectroscope	1		
Unit	Lens Aberrations	Hours (8)	Mode	
	a) Aberrations , spherical aberration, aplanatic points	2		
	b) chromatic aberration, chromatic aberration in a lens	1	Lecture With Demo	
II	c) expression for longitudinal chromatic aberration for an object at finite distance	2	Lecture With Ppt	
	d) achromatic lenses , condition for achromatism of 2 two lenses in contact			
	e) condition for achromatism of two lenses separated by a distance.	1		
Unit	Optical Instruments	Hours (8)	Mode	
	a) Objective and Eyepiece	1		
	b)Kellner's Eyepiece, Huygen's Eyepiece , Ramsden Eyepiece	2		
ш	c) Comparison of Ramsden Eyepiece with Huygen's Eyepiece	2	Lecture Lecture With Ppt	
	d) Compound Microscope, Telescopes	2	Group Discussion	
	e) Refracting Astronomical telescope ,Reflecting Telescope	2		
Unit	Interference Of Sound	Hours (8)	Mode	
	a) Interference of sound	1	Lecture	
IV	b) condition for interference of sound waves	1	Lecture With Ppt Seminar	

	c) energy distribution due to interference of sound waves	1	
	d) quincke's tube	1	
	e) beats and analytical treatment of beats	2	
	f) Combination tones and Helmholtz resonator.	2	
Unit	Acoustics And Ultrasonics	Hours (8)	Mode
	a) Acoustics and reverberation	1	
	b) Sabine's formula , factors affecting the acoustics of buildings, sound distribution in an auditorium	3	Lecture
V	c) requisites for good acoustics	1	Lecture With Ppt
	d)ultrasonics and production of ultrasonics	1	
	e)piezoelectric oscillator, detection of ultrasonic waves and applications of ultrasonic waves.	2	

Course Designed By: 1. Dr. K. Ramavenkateswari

2. Dr. K. Jayabala

Programme	B.Sc	Programme Code	UPH			
Course Code	20UPHA21	Number of Hours/Cycle	4			
Semester	п	Max. Marks	100			
Part	III	Credit	4			
	ALLIE	ED COURSE - II				
Course Title	Allied Physic	es – II	L	Т	Р	
Cognitive Level	Upto K3		55	3	2	

L-*Lecture T*-*Tutorial P*-*Practical*

Preamble

To understand the concept of heat, transmission of heat, kinetic theory of gases and Low temperature physics, Dispersion, Acoustics and ultrasonics.

Unit I	Transmission of Heat	11 Hours					
	Conduction – Coefficient of Thermal Conductivity –Lee's						
	disc method of determination of thermal conductivity of a						
	bad conductor- Convection - Newton's law of cooling -						
	Determination of specific heat capacity of liquid - Radiation						
	- Black body - Kirchhoff's law - Stefan - Boltzmann law -						
	Energy distribution in black body spectrum - Wien's law -						
	Rayleigh Jean's law- Planck's law.						
Unit II	Kinetic Theory of Gases	11 Hours					
	Kinetic Theory of gases- assumptionsmean free path -						
	expression for mean free path - Transport phenomenon -						
	expression for Diffusion, Viscosity and Thermal						
	conductivity of gasVander walls equation of state -						
	Determination of Vander walls constant - Relation between						
	Vander Wall's constant and critical constants.						
Unit III	Low Temperature Physics	11 Hours					
	Joule - Kelvin effect - Liquefaction of Air-Linde's Process -						
	liquefaction of hydrogen - liquefaction of helium-						
	Kammerling - Onne's method - Helium I and II - Lambda						
	point - production of low temperatures - adiabatic						
	demagnetization - practical applications of low temperature.						
Unit IV	Dispersion	11 Hours					
	Refraction through a prism - dispersion by a prism —						
	angular dispersion – dispersive power – angular and						
	chromatic dispersions – achromatic combination of prisms –						
	deviation without dispersion – dispersion without deviation						
	 direct vision spectroscope. 						
Unit V	Acoustics and ultrasonics	11 Hours					
	Acoustics - reverberation - Sabine's formula - factors						
	affecting the acoustics of buildings – sound distribution in						
	an auditorium – requisites for good acoustics – ultrasonics –						
	production of ultrasonics – piezoelectric oscillator –						
	detection of ultrasonic waves - applications of ultrasonic						
	waves.						

Pedagogy

These concepts are better understood when lectures are accompanied with chalk and talk method, demonstration, Power Point Presentation and Learning aids.

Text Books

1. Brijlal and Subramanyam ,(2012), "*Heat and Thermodynamics and Statistical Physics*", Sultan Chand and Company,14th Edition ,New Delhi.

Unit I: Chapter 8, 14 &15: 15.1, 15.11, 15.22, 14.5, 14.6, 14.7, 8.6, 8.7, 8.8, 8.9, 8.10, 8.12, 8.13, 8.14, 8.15, 8.17 Unit II: Chapter 1, 2 & 3: 1.3, 3.2, 3.5, 3.7, 3.16, 3.8, 3.11, 2.8, 2.10, 2.11, 2.12, Unit III: Chapter 2 & 7: 2.24, 7.8, 7.10, 7.11, 7.12, 7.13, 7.14, 7.15, 7.16, 7.21

- Brijlal and Subramanyam , (2010), "A Text Book Of Optics", Sultan Chand and Company, 24th Edition ,New Delhi. Unit IV: Chapter 8: 8.1-8.8
- Brijlal and Subramanyam , (1992), "Waves and Oscillations", Vikas Publishing House Private Limited, 2nd Edition ,New Delhi. Unit V: Chapter 11: 11.14, 11.15, 11.16, 11.20, 11.21, 11.22, 11.23, 11.24, 11.24.3, 11.25, 11.27

Reference Books

- 1. Mathur.D.S,(2006), "*Heat and Thermodynamic*"s, Sultan Chand and Company, New Delhi.
- 2. Murugesan.R,(2015),"*Thermal Physics*", Sultan Chand and Company,New Delhi.
- 3. Rajam. J.B,(1985), "*Heat and Thermodynamics*", Sultan Chand and Company, New Delhi.

E-Resources

- 1. https://blossoms.mit.edu/resources/physics_resources
- 2. https://micro.magnet.fsu.edu/optics/webresources/index.html
- 3. http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
- 4.https://phys.libretexts.org
- 5.https://aip.scitation.org/ltp/info/focus

Course Outcomes:

At the end of the course, students would be able to

CO1	Make use of the laws of conduction, convection and radiation
CO2	Solve the kinetic theory of gases and transport phenomena
CO3	Apply the liquefaction methods for various gases
CO4	Identify the laws of refraction, reflection and the terminology of prisms
CO5	Write the acoustics and sabine's formula

Mapping of Programme Specific Outcomes [PSOs] with Course Outcomes [Cos]

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	2	3	2	2	2	2	1	1	2	1	1	1
CO2	2	3	2	2	2	2	1	1	2	1	1	1
CO3	2	2	1	1	2	1	1	1	2	1	1	1
CO4	2	2	1	1	2	2	2	2	2	1	1	1
CO5	2	2	1	1	1	1	1	1	2	1	1	1

3 - High . 2 - Moderate. 1- Low

BLUE PRINT – End Semester Examinations

			Section A MCQs		Section B	Section C
Units	COs	COs K-Level			Either/ or Choice	Open Choice
			No. Of Questions	K-Level	No. of Question	No.of Question
1	CO1	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
2	CO2	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
3	CO3	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
4	CO4	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
5	CO5	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
No of (Questions	to be asked	10		10	5
No of Questions to be		10		5	3	
Marks for each Question		1		4	10	
Total 1	narks for	each Section	10		20	30

Articulation Mapping - K Levels with Course Outcomes (COs)

- K1 Remembering and recalling facts with specific answers
- $\ensuremath{K2}\xspace \ensuremath{\mathsf{Basic}}\xspace$ understanding of facts and stating main ideas with general answers
- $K3-Application\ oriented-Solving\ problems$

Distribution of Section –wise Marks with K Levels

K Levels	Section A (NoChoice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without Choice
K1	10	-	-	10	10
K2	-	40	-	40	40
K3	-	-	50	50	50
Total Marks	10	40	50	100	100

LessonPlan

Unit	Transmission Of Heat	Hours (11)	Mode	
	a) Conduction and Coefficient of Thermal Conductivity	2		
	b) Lee's disc method of determination of thermal conductivity of a bad conductor	2	Lecture With Demo Mode Lecture Lecture With Ppt	
Ι	c) Convection , Newton's law of cooling , Determination of specific heat capacity of liquid	3		
	d) Radiation , Black body , Kirchhoff's law ,Stefan Boltzmann law , Energy distribution in black body spectrum ,Wien's law , Rayleigh Jean's law and Planck's law .	4		
Unit	Kinetic Theory Of Gases	Hours (11)	Mode	
	a)Kinetic Theory of gases- and its assumptions	2		
	b)mean free path ,expression for mean free path and Transport phenomenon	2	Lecture	
II	c) expression for Diffusion, Viscosity and Thermal conductivity of gas	2	Lecture With Ppt	
	d)Vander walls equation of state and Determination of Vander walls constant	3	Seminar	
	e) Relation between Vander Wall's constant and critical constants	2		
Unit	Low Temperature Physics	Hours (11)	Mode	
	a) Joule, Kelvin effect	2		
	b)Liquefaction of Air, Linde's Process	2		
	c) liquefaction of hydrogen , liquefaction of helium, Kammerling - Onne's method	3	Lecture	
III	d) Helium I and II , Lambda point , production of low temperatures, adiabatic demagnetization	2	Lecture With Ppt Seminar	
	e) Practical applications of low temperature.	2	. Seminar	
Unit	Dispersion	Hours (11)	Mode	
	a) Dispersion by a prism, refraction through a prism	2	Lecture	
1 V	b) angular dispersion, dispersive power , angular and chromatic dispersions	2	Lecture With Ppt	
	c) achromatic combination of prisms	2		

	d)deviation without dispersion	2	Seminar
	e)dispersion without deviation	2	
	f) direct vision spectroscope	1	
Unit	Acoustics And Ultrasonic	Hours (11)	Mode
	a) Acoustics and reverberation	2	
	b) Sabine's formula , factors affecting the acoustics of buildings, sound distribution in an auditorium	3	Lecture
V	c) requisites for good acoustics	2	Lecture With Ppt
	d)ultrasonics and production of ultrasonics	2	
	e)piezoelectric oscillator, detection of ultrasonic waves and applications of ultrasonic waves.	2	Seminar

Course Designed By:

- 1. Dr. T.Rajesh Kumar
- 2. Dr. P.Uma Mageshwari

Programme	B.A./B.Sc /B.Com	Programme Code	UPH				
Course Code	20UPHN21	Number of Hours/Cycle	2				
Semester	II	Max. Marks	100				
Part	IV	Credit	2				
	NON	MAJOR ELECTIVE – II					
Course Title	Physics in Everyda	y life – II	L	Т	Р		
Cognitive level	K1& K2		25	3	2		
L –Lecture T – Tutorial P- Practical							

Preamble:

Introduce the students to get better insight on Home appliances, Electric current and voltage, AC generation, electrical circuits & connections and make the students to inculcate the basic principles of Lab components and equipments.

Unit I	Physics in Home Appliances - I	5 Hours		
	Electrical bulbs – fluorescent lamps – inverter-principle and op			
	of fan-television - washing machine -vacuum cleaner .			
Unit II	Physics in Home Appliances – II	5 Hours		
	water heater – electric iron box – microwave oven –			
	refrigerator - induction stove – pressure cooker.			
Unit III	Physics in Electrical connections	5 Hours		
	AC and DC – single phase and three phase connections – three			
	phase transformer - house wiring star-star, star-delta, delta -			
	star connections – overloading – earthing – short circuiting –			
	fuses.			
Unit IV	Physics in Lab Components	5 Hours		
	Condenser boxes - condenser in series - condensers in parallel			
	- resistance - colour codes of resistance - resistance in series -			
	resistance in parallel – inductance coil.			
Unit V	Physics in Lab Instruments	5 Hours		
	Power supply – galvanometer - voltmeter – ammeter – multimeter - Travelling microscope – spectrometer – Cathode Ray Oscilloscope (CRO).			

Pedagogy

These concepts are better understood when lectures are accompanied with chalk and talk method, demonstration, Power Point Presentation and Learning aids.

Text Book

1. Metha.K, Ramanamurthy.G.V, (2014), *Electrician*, Computech Publications Limited

Reference Books

- Hallidary.D, Resnick and Walker.J, (2001), *Fundamental of Physics*,6th edition, Wiley, NewYork.
- 2. Priti Agrawal and RahulGarg, *IIT Electrician Theory I and II*, Neelkanth Publishers Private Limited.

E-Resources

1.https://blog.schoolspecialty.com/physics-in-everyday-life-examples-for-theclassroom/

- 2. https://www.onlinecolleges.net/100-amazing-videos-for-teaching-and-studying-physics/
- 3. http://www.physics.org/explore.asp

Course Outcomes

At the end of the course, students would be able to

C01	Describe the better insight on Home Appliances-I
C02	Discuss the better insight on Home Appliances-II
C03	List the electrical connections
C04	Recall the various lab components
C05	Demonstrate the various lab Instrument

BLUE PRINT – End Semester Examinations

Articulation Mapping - K Levels with Course Outcomes (COs)

Units			Section A		Section B
	COs	COs K-Level	Either/ or Choice		Open Choice
			No. Of Questions	K-Level	No. of Question
1	CO1	Up to K3	2	K1	1 (K2)
2	CO2	Up to K3	2	K1	1 (K2)
3	CO3	Up to K3	2	K1	1 (K2)
4	CO4	Up to K3	2	K1	1 (K2)
5	CO5	Up to K3	2	K1	1 (K2)
No of Qu	uestions t	o be asked	10		5
No of Questions to be answered		5		3	
Marks for each Question		3		5	
Total m	arks for e	ach Section	30		25

K1 – Remembering and recalling facts with specific answers

 $\mathrm{K2}-\mathrm{Basic}$ understanding of facts and stating main ideas with general answers

Distribution of Section -wise Marks with K Levels

K Levels	Section A (NoChoice)	Section B (Either/or)	Section C (OpenChoice)	Total Marks	% of Marks without Choice
K1	10	-	-	10	10
K2	-	40	20	60	60
K3	-	-	30	30	30
Total Marks	10	40	50	100	100

Unit	Physics In Home Appliances - I	Hours (5)	Mode
	a)Electrical bulbs ,fluorescent lamps	1	
Ι	b) inverter, principle and operations of fan kettle	2	Lecture With Demo
	c) television ,washing machine and	-	Lecture
	Vacuum cleaner.		
Unit	Physics In Home Appliances – Ii	Hours (5)	Mode
	a) water heater	1	
	b) electric iron box and	2	T .
II	microwave oven	2	Lecture
	c) refrigerator	t lamps 1 rations of fan kettle 2 ne and 2 opliances – Ii Hours (5) 1 1 2 1 ure cooker. 1 Tonnections Hours (5) e and three phase 2 , house wiring star- nnections 2 ort circuiting fuses . 1 omponents Hours (5) lenser in series and 2 f resistance 1 cance in parallel and 2 struments Hours (5) er 1 multimeter 2	Lecture With Demo
	d) Induction stove and pressure cooker.	1	
Unit	Physics In Electrical Connections	Hours (5)	Mode
	a) AC, DC, single phase and three phase	2	
	connections		Lecture With Demo
III	b) three phase transformer , house wiring star- star, star-delta, delta , star connections	2	Lecture
	c) Overloading, earthing, short circuiting fuses .	1	
Unit	Physics In Lab Components	Hours (5)	Mode
	a) Condenser boxes, condenser in series and parallel	2	
IV	b) resistance , colour codes of resistance	1Lecture W2Lecture W2Lecture W112Lecture W1Lecture W1Lecture W1Lecture W1Lecture Wstar-22Lecture Wstar-21Lecture Wand21Lecture W12Lecture W1Lecture Wand21Lecture W2Lecture W312Lecture W31121Lecture W312Lecture W31313131313131313131323133 <t< td=""><td>Lecture With Demo</td></t<>	Lecture With Demo
	c) resistance in series, resistance in parallel and inductance coil.	2	Seminar
Unit	Physics In Lab Instruments	Hours (5)	Mode
	a) Power supply, galvanometer	1	
V	b),voltmeter, ammeter and multimeter	2	Lecture With Demo
v	c)Travelling microscope, spectrometer and CRO.	2	

Course Designed By

- 1. Dr. T.Rajesh Kumar
- 2. Dr. P.Uma Mageshwari

Programme	All	Programme Code	è	UPH			
Course Code	20UEGS21	Number of Hour	Number of Hours/Cycle				
Semester	II	Max. Marks		100			
Part	IV	Credit		2			
	ENVIRONMENT AND GENDER STUDIES						
Course Title	Environment and Gender Studies		L	Т	Р		
Cognitive level	Upto K3		26	4	-		

L-Lecture T-Tutorial P-Practical

Preamble

This course aims to bring to the knowledge of the students that environment and conservation play a vital role in any nation. Nations across the globe face newer environmental challenges. The degradation of our biodiversity in the form of deforestation, industrialization, etc. and further the equality between sexes and gender sensitization are the need of the hour that led to placing both environment and gender studies in Curricula.

Unit I	Environment Education:	6 Hours						
	Objectives – Nature and Scope – Environment Education in							
	India, Components of Environment – Biosphere,							
	Lithosphere, Hydrosphere, and Atmosphere. Global							
	Environmental Issues - Global Warming, Ozone Layer							
	Depletion, Acid Rain, Desertification – Loss of Biodiversity							
	– E-wastes and Cloud Bursting.							
Unit II	Ecosystem & Biodiversity	6 Hours						
	Ecosystem: Concept – Structure and Functions of an							
	Ecosystem: Producers, Consumers and Decomposers –							
	Energy Flow in an Ecosystem; Food Chains, Food Webs							
	and Ecological Pyramids; Biodiversity: Introduction –							
	National and Global Levels – Loss of Biodiversity –							
	Hotspots - Conservation Strategies: In Situ and Ex Situ.							
Unit III	Energy Resources and Conservation	4 Hours						
	Definition – Classification: Conventional and Non-							
	Conventional – Types of Wastes: Solid, Liquid and Gaseous							
	– Conversion of Wastes into Wealth – Energy from Wastes.							
Unit IV	Natural Resources	6 Hours						
	Introduction – Types of Resources: Forest, Water, Mineral,							
	Animal and Livestock, Land and Food – Resources							
	Depletions: Causes, Consequences and Remedial Measures –							
	Environmental Laws – Acts, Rules and Procedures in India –							
	Social Issues – Sustainable Development							
Unit V	Gender	4 Hours						
	Introduction – Constitutional Guarantees - Types of Gender							
	- Influence of Genes, Hormones and their Roles - Agents of							
	Gender Socialization: Role of Family – Role of Peer Group –							
	Role of Religion.							

Text Book

1. Ravichandran, P. and Muthumari, M. (2019). *Environmental Studies*, New Century Book House, Channai, Tamil Nadu, India.

Reference Books

- 1. AbhijitMallick (2014). *Environmental Science and Management*, Viva Books Private Limited, New Delhi, India.
- 2. Kanagasabai, S. (2010). *Textbook on Environmental Studies*, PHI Learning Private Limited, New Delhi, India.
- 3. Rajagopalan, R. (2005). *Environmental Studies*, Oxford University Press, New Delhi, India.
- 4. UlaganathanSankar (2001). *Environmental Economics*, Oxford University Press, New Delhi, India.
- 5. Shukla, R.S. and Chandel, P.S. (2003). *Plant Ecology*, S.Chand& Company Limited, New Delhi, India.
- 6. Ramakrishnan, P.S. (2013). *Ecology and Sustainable Development*, National Book Trust, New Delhi, India.
- 7. Chattopadhyay, S.K. (2017). *Gender Socialization and the Making of Gender in the Indian Context*, Sage Publication, New Delhi, India.

Journal Source

The Indian Journal of Gender Studies [Journals.sagepub.com]

Course Outcomes [CO]: On completion of this course, the students will be able to

CO	Statement								
CO1	Define the concepts of Environmental Education and Relate the various environmental								
	issues.								
CO2	Classify the behaviour of various Tropic Levels of Ecosystems and Interpret their Energy								
	Flow. And make use of acquired knowledge in mitigation of Loss of Biodiversity.								
CO3	Identify and apply knowledge in various types of wastes and their conversion into wealth.								
CO4	Illustrate the Environmental Laws and Develop knowledge about Sustainable								
	Development.								
CO5	Make use of acquired knowledge in issues related to gender equality.								

Mapping of Programme Specific Outcomes [PSOs] with Course Outcomes [Cos]

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	0	0	0	0	0	0	1	1	2	1	1	1
CO2	0	0	0	0	0	0	1	1	2	2	1	1
CO3	0	0	0	0	0	0	1	1	2	2	1	1
CO4	0	0	0	0	0	0	1	1	2	2	1	1
CO5	0	0	0	0	0	0	1	1	2	1	1	1

3 - High . 2 - Moderate. 1- Low

BLUE PRINT – End Semester Examinations

			Section	Α	Section B
Units	Cos	K-Level	Either/or (Open choice	
			No. of Questions	K-Level	No. of Questions
1	CO1	Up to K2	2	K1 & K2	К2
2	CO2	Up to K2	2	K1 & K2	K2
3	CO3	Up to K3	2	K1 & K2	K3
4	CO4	Up to K2	2	K1 & K2	K2
5	CO5	Up to K3	2	K1 & K2	K3
No. of Questio	ns to be asked		10		5
No. of Questions to be answered			5		3
Marks for each Question			3		5
Total Marks fo	or each Section		30		25

Articulation Mapping - K Levels with Course Outcomes (COs)

K1 – Remembering and recalling facts with specific answers

K2-Basic understanding of facts and stating main ideas with general answers

 $K3-Application \ oriented-Solving \ problems$

Distribution of Section –wise Marks with K Levels

K Levels	Section A (Either/or)	Section B (Open choice)	Total Marks	% of Marks without choice	Consolidated marks (Rounded off)
K1	15	-	15	27.2	27
K2	15	15	30	54.5	55
K3	-	10	10	18.1	18
Total Marks	30	25	55	100	100%

Lesson Plan

Unit	Environment Education	Hours (6)	Mode		
	a) Objectives , Nature and Scope, Environment Education in India	2			
I	b) Components of Environment, Biosphere, Lithosphere, Hydrosphere, and Atmosphere.	2	Lecture		
I	c) Global Environmental Issues , Global Warming, Ozone Layer Depletion, Acid Rain.	2	Group Discussion		
Unit	d) Desertification , Loss of Biodiversity, E-wastes and Cloud Bursting.	2			
Unit	Ecosystem & Biodiversity	Hours (6)	Mode		
	a) Concept , Structure and Functions of an Ecosystem	1			
	b)Producers, Consumers and Decomposers, Energy Flow in an Ecosystem	2			
II	c) Food Chains, Food Webs and Ecological	1	Lecture		
	Pyramids d) Biodiversity Introduction , National and Global Levels	1	Group Discussion		
	e) Loss of Biodiversity, Hotspots Conservation Strategies: In Situ and Ex Situ.	1			
Unit	Energy Resources And Conservation	Hours (4)	Mode		
III	a) Definition, Conventional and Non- Conventional resources, types of Wastes	2			
	b) Solid, Liquid and Gaseous, Conversion of wastes into wealth ,Energy from Wastes.	2	Lecture		
Unit	Natural Resources	Hours (6)	Mode		
	a)Introduction, Types of Resources, Forest,Water, Mineral, Animal and Livestock, Land and Food	2	Lecture		
IV	b) Resources Depletions: Causes, Consequences and Remedial Measures, Environmental laws	2	Group Discussion		
	c) Acts, Rules and Procedures in India, Social Issues and Sustainabl Development.	2			
Unit	Gender	Hours (4)	Mode		
v	a) Introduction, Constitutional Guarantees Types of Gender and Influence of Genes	2			
, ,	b) Hormones and their Roles, Agents of GenderSocialization, Role of Family Role of Peer Group Role of Religion.	es and their Roles, Agents of 2 Lectur			

Course Designed By

- 1. Dr. M. Muthumari
- 2. Dr.P. Ravichandran

Programme	B.Sc	Programme Code	UPH				
Course Code	20UPHC2P	Number of Hours/Cycle	2				
Semester II		Max. Marks	100				
Part	III	Credit	3				
CORE PRACTICAL - I							
Course Title Major Physics Practicals - I							

LIST OF EXPERIMENTS (Any 12)

- 1. Young's Modulus Uniform bending (Pin and Microscope)
- 2. Young's Modulus Nom- Uniform bending (Pin and Microscope)
- 3. Acceleration due to gravity –Compound Pendulum
- 4. Moment of Inertia & Rigidity modulus Torsion pendulum
- 5. Verification of Laws Sonometer
- 6. Frequency of the tuning fork Sonometer
- 7. Calibration of Voltmeter Potentiometer
- 8. Calibration of Ammeter Potentiometer
- 9. Young's Modulus Uniform Bending Optic Lever and Telescope
- 10. Young's Modulus Non Uniform Bending Optic Lever and Telescope
- 11. Thermal conductivity of bad conductor using Lee's disc
- 12. Coefficient of Viscosity -Stoke's method
- 13. Surface tension by capillary rise method
- 14. Surface tension by Drop weight method

Programme B.Sc		Programme Code	UPH					
Course Code	20UPHA2P	Number of Hours/Cycle	2					
Semester	II	Max. Marks	100					
Part	III	Credit	2					
ALLIED PRACTICAL - I								
Course Title Allied Physics Practicals - I								

LIST OF EXPERIMENTS (Any 12)

- 1. Young's Modulus Uniform bending (Pin and Microscope)
- 2. Young's Modulus Nom- Uniform bending (Pin and Microscope)
- 3. Acceleration due to gravity & Radius of gyration -Compound Pendulum
- 4. Moment of Inertia & Rigidity Modulus of a given wire- Torsion pendulum
- 5. Frequency of the tuning fork Sonometer
- 6. Verification of Laws Sonometer
- 7. Calibration of Voltmeter Potentiometer
- 8. Calibration of Ammeter Potentiometer
- 9. Young's Modulus Uniform Bending Optic Lever and Telescope
- 10. Young's Modulus Non Uniform Bending Optic Lever and Telescope
- 11. Thermal conductivity of bad conductor using Lee's disc
- 12. Coefficient of Viscosity –Stoke's method
- 13. Surface tension by capillary rise method
- 14. Surface tension by Drop weight method

Programme	B.Sc	Programme Code	U	PH						
Course Code	20UPHC31	Number of Hours/Cycle	4	4						
Semester	emester III Max. Marks				100					
Part	III	Credit	4							
	Core Course V									
Course Title	Electricity and Ele	L	Т	Р						
Cognitive Level	e Level Up to K3									

L –Lecture T – Tutorial P- Practical

Preamble

To provide basic concepts of electricity and electromagnetism and their applications. It will equip the students with required pre requisites to understand electro dynamical phenomena.

Unit I	Thermal effect of electric current	11 Hours					
	Thermoelectricity- Seebeck effect- laws of thermo e.m.f measurement						
	of thermo e.m.f using potentiometer-Peltier effect-demonstration-						
	Thomson effect- demonstration - thermodynamics of thermo couple -						
	thermo electric diagram –uses.						
Unit II	DC and AC Circuits	11Hours					
	Growth and decay of current in LR circuit - determination of high						
	resistance by leakage -growth and decay of charge in LCR circuit-						
	Alternating Current-EMF induced in a coil rotating in a magnetic field-						
	LCR series resonance circuit -sharpness of resonance-parallel resonance						
Unit III	Magnetic effect of electric current	11 Hours					
	Magnetic flux and magnetic induction- Biot Savart law- magnetic						
	induction at a point due to a straight conductor carrying current -						
	magnetic induction at a point on the axis of a circular coil carrying						
	current- force on a current carrying conductor in a magnetic field -torque						
	on a current loop in a uniform magnetic field - amperes circuital law -						
	magnetic field inside a long solenoid - Moving coil Ballistic						
	galvanometer-theory -experiment to find charge sensitivity.						
Unit IV	Electromagnetic induction	11 Hours					
	Faraday's laws of electromagnetic induction-self induction -self						
	inductance of a long solenoid - determination of L by Rayleigh's						
	methods- mutual induction-mutual inductance between two co-axial						
	solenoids-experimental determination of mutual inductance - co-						
	efficient of coupling- eddy currents-uses.						
Unit V	Maxwell's equation & electromagnetic waves	11 Hours					
	Introduction- Maxwell's equations-Displacement current- Poynting						
	vector-Electromagnetic waves in free space-Hertz experiment for						
	production and detection of EM waves - Wave equations for Electric						
	field and Magnetic field-monochromatic plane waves-EM waves in a						
	matter						

Pedagogy

These concepts are better understood when lectures are accompanied with Class Room Lectures, chalk and talk, Power point presentation, Quiz, Assignment and Group Discussion.

Text Books

- 1. Murugeshan.R., (2002) *Electricity and Electromagnetism*, Sultan Chand and Company, New Delhi.
 - Unit III: Chapter 5: 5.1- 5.6,5.8 5.10,5.12,5.16 5.18.
 - Unit IV : Chapter 7: 7.1 7.10.
- Unit V : Chapter 5: 5.1- 5.6,5.8 5.10,5.12,5.16 5.18.
- 2. Murugeshan.R., (2008) *Electricity and Magnetism*, Sultan Chand and Company, New Delhi. Unit I: Chapter 8: 8.1-8.8.
 - Unit II : Chapter 12: 12.1,12.2,12.4,12.5,12.6 Chapter 13 :13.1 – 13.5.

Reference Books

- 1. Brij Lal, Subramanian N and Jivan Seshan, (2005), *Mechanics and Electromagnetics*, Eurasia Publishing House Private limited, New Delhi.
- 2. Tiwari.K.K.,(2001), *Electricity and Magnetism*, Sultan Chand and Company, New Delhi.
- 3. Sehgal. D.L. Chopra K. L .and Sehgal.N.K , *Electricity and Magnetism*, Sultan chand and Company, New Delhi.
 - 4.Halliday.D,Resnick.R and Walker.J,(2011), *Fundamentals of Physics Electicity and Magnetism*, Wiley India Private Limited.

E-Resources

- https://nptel.ac.in/courses/115/101/115101005/
- https://ocw.mit.edu/courses/physics/8-311-electromagnetic-theory-spring-2004/
- https://www.khanacademy.org/science/physics/light-waves/introduction-to-lightwaves/v/electromagnetic-waves-and-the-electromagnetic-spectrum
- https://ocw.mit.edu/courses/physics/8-07-electromagnetism-ii-fall-2012/

Course Outcomes

At the end of the course, students would be able to

CO1	Build the Ideas of Thermal effect of Electric Current
CO2	Make use of DC and AC Circuits with Transient Currents
CO3	Organize the concepts of Magnetic effect of Electric Current
CO4	Identify and Explore the types of Electromagnetic Induction
CO5	Construct Maxwell's equation of Electromagnetic Waves

Mapping of Programme Specific Outcomes [PSOs] with Course Outcomes [COs]

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	3	2	2	2	2	1	1	1	1	1	1	1
CO2	3	2	2	2	2	1	2	1	1	1	1	1
CO3	3	3	2	2	2	2	1	1	1	1	1	1
CO4	2	2	3	3	2	2	1	2	1	1	1	1
CO5	2	2	3	3	1	1	2	1	1	1	1	1

3. High; 2. Moderate; 1. Low

Articulation Mapping - K Levels with Course Outcomes (COs)

			Sec	tion A	Section B	Section C
Units	COs	K-Level	Μ	CQs	Either/ or	Open
			No. Of	V L arral	Choice No. of	Choice No.of
			Question	K-Level	Question	Question
1	CO1	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
2	CO2	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
3	CO3	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
4	CO4	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
5	CO5	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
No of Q	No of Questions to be asked		10		10	5
No of Questions to be answered		10		5	3	
Marks for each Question		1		4	10	
Total n	narks for e	each Section	10		20	30

K1 - Remembering and recalling facts with specific answers

K2 – Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

K Levels	Section A (NoChoice)	Section B(Either/or)	Section C (Open Choice)	Total Marks	% of Marks without Choice
K1	10	-	-	10	10
K2	-	40	-	40	40
К3	-	-	50	50	50
Total Marks	10	40	50	100	100

Lesson Plan

Unit	Thermal Effect Of Electric Current	11 Hours	Mode
	a) Thermoelectricity	1	
	b) Seebeck effect	1	
	c) laws of thermo e.m.f	1	Lecture
	d) measurement of thermo e.m.f using potentiometer	2	Lecture With PPT Group
Ι	e) Peltier effect-demonstration	2	Discussion Lecture With
	f) Thomson effect- demonstration	2	Demo Seminar
	g) thermodynamics of thermo couple –thermo electric diagram –uses	2	
Unit	DC and AC Circuits	11 Hours	Mode
	a) Growth and decay of current in LR circuit	2	
	b) determination of high resistance by leakage	1	
II	c) growth and decay of charge in LCR circuit	1	
	d) Alternating Current	1	Lecture Lecture With
	e) EMF induced in a coil rotating in a magnetic field	2	PPT Group
	f) LCR series resonance circuit	2	Discussion
	g)sharpness of resonance-parallel resonance	2	Lecture With Demo Seminar
Unit	Magnetic Effect Of Electric Current	11 Hours	Mode
	a) Introduction	1	
III	b) Magnetic flux and magnetic induction	2	
	c) Biot Savart law	1	
	d) magnetic induction at a point due to a straight conductor carrying current	2	Lecture

			Lecture With PPT	
	e) magnetic induction at a point on the axis of a circular coil carrying current	2	Group Discussion Lecture With Demo	
	f)force on a current carrying conductor in a magnetic field	1	Seminar	
	g)Torque on a current loop in a uniform magnetic field, amperes circuital law.	2		
Unit	Electromagnetic Induction	11 Hours	Mode	
	a) Faraday's laws of electromagnetic induction	1		
	b) self induction	1		
	c) self inductance of a long solenoid	2		
	d) determination of L by Rayleigh's methods	2	Lecture	
IV	e) mutual induction-mutual inductance between two co-axial solenoids	2	Lecture With PPT Group	
1,	f) experimental determination of mutual inductance	2	Discussion Lecture With Demo	
	g)co-efficient of coupling- eddy currents-uses.	1	Seminar	
Unit	Maxwell's equation & Electromagnetic waves	11 Hours	Mode	
	a)Introduction- Maxwell's equations	1		
	b)Displacement current- Poynting vector	2	Lecture Lecture With	
V	c)Electromagnetic waves in free space	2	PPT Group	
	d)Hertz experiment for production and detection of EM wave	2	Discussion Lecture With	
	e)Wave equations for Electric field and Magnetic field	1	Demo Seminar	
	f)monochromatic plane waves	2		
	g)EM waves in a matter.	1		

Course Designed by

1.Dr. S. Saravanan

2. Mr. R. Jayaraman

Programme	B.Sc	Programme C	ode	UPH	
Course Code	20UPHA31	Number of Hours/Cycle		4	
Semester	III	Max. Marks		100	
Part	III	Credit		4	
	Allied Course -	III			
Course Title	Allied Physi	ics - III	L	Т	Р
Cognitive Level	K1,K2 & K	3	56	2	2
L –Lecture T – Tutoria	l P- Practica	l			

Preamble

To provide the fundamental laws of current electricity, electromagnetism and utilize the ideas of interference and diffraction. It will equip the students to understand spectroscopic phenomena.

Unit I	Current electricity	11 Hours				
	Current and current density – Expression for current density - Ohm's					
	law and electrical conductivity – Kirchhoff's laws – Wheatstone's					
	network - condition for balance -Carey-Foster's bridge - measurement					
	of resistance – measurement of specific resistance -Potentiometer –					
	Principle- calibration of Voltmeter and Ammeter.					
Unit II	Electromagnetism	11 Hours				
	Electromagnetic Induction – Faraday's laws - Self Induction – Mutual					
	Induction – Coefficient of Coupling –E.M.F.induced in a coil rotating in					
	a magnetic field- Mean value - RMS value - Peak value - A.C. Circuits					
	LCR in series and parallel circuits – impedance – resonant frequency.					
Unit III	Interference	12 Hours				
	Interference – conditions for interference maxima and minima – Air					
	wedge - thickness of a thin wire - Newton's rings - determination of					
	wavelength using Newton's rings.					
Unit IV	Diffraction	11 Hours				
	Diffraction – Types of Diffraction - Difference between interference and					
	diffraction- Plane diffraction grating - theory of plane transmission					
	grating - experiment to determine wavelength of a Spectral line using the					
	transmission grating.					
Unit V	Spectroscopy	11 Hours				
	Infrared spectroscopy - sources and detector - uses - ultraviolet					
	spectroscopy - sources - applications - Raman effect - Experiment					
	(Wood's apparatus) – Quantum theory of Raman effect – applications.					

Pedagogy

These concepts are better understood when lectures are accompanied with hands on experiments, Power point presentation and Seminar.

Text Books

- 1. Murugeshan.R., (2014) *Electricity and Magnetism*, Sultan Chand and Company, New Delhi.
 - Unit I : Chapter 6: 6.1,6.2,6.4,6.6
 - Chapter 7: 7.1,7.2.
 - Unit II : Chapter 13: 13.1,13.2,13.3.
 - Unit III: Chapter 14: 14.4.,14.7.
- 2. Subramanyam and Brijlal. S., (2010), A text book of Optics, Chand and Company,

25th Edition, New Delhi.

- Unit III: Chapter 14: 14.4.,14.7,
- Unit IV: Chapter 18: 18.5,18.7.1,18.7.6.
- 3. Murugeshan.R.,(2008), *Optics and Spectroscopy*, Sultan Chand and Company,

New Delhi.

Unit – III : Chapter 2: 2.7 - 2.9.

Unit - V : Chapter 5 : 5.1-5.8.

Reference Books

- 1. Brij Lal, Subramanian N and Jivan Seshan, (2005), *Mechanics and Electromagnetics*, Eurasia Publishing House Private limited, New Delhi.
- 2. Tiwari.K.K.,(2001), *Electricity and Magnetism*, Sultan Chand and Company, New Delhi.
- 3. Sathyaprakash, Ratan Prakashan Mandhir,(1990), Optics, NewDelhi.
- 4. Banewell.C.N.,(2006), *Introduction to Molecular Spectroscopy*, TMH Publishing, New Delhi.

E Resources

1.https://ocw.mit.edu/courses/physics/8-311-electromagnetic-theory-spring-2004/

 $\label{eq:linear} 2.https://www.texasgateway.org/resource/172-applications-diffraction-interference-and-coherence-3.https://www.ece.gatech.edu/sites/default/files/documents/stepup/2017/interference_and_diffract-ion.pdf$

4.https://edu.rsc.org/download?ac=12446

Course Outcomes

At the end of the course, students would be able to

CO1	Experiment with Carey Foster's bridge and Potentiometer in Current Electricity
CO2	Build the relevant concepts of Electromagnetism
CO3	Utilize the ideas of Interference
CO4	Make use of the Diffraction phenomena
CO5	Apply Spectroscopy principles

Mapping of Programme Specific Outcomes [PSOs] with Course Outcomes [COs]

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	2	3	3	3	3	2	1	1	1	1	1	1
CO2	3	2	3	3	3	2	2	1	1	1	1	1
CO3	3	3	3	3	3	2	1	1	1	1	1	1
CO4	3	3	3	3	3	2	1	1	1	1	1	1
CO5	3	1	2	1	1	2	1	1	1	1	1	1

3. High; 2. Moderate; 1. Low

Articulation Mapping - K Levels with Course Outcomes (COs)

			Sec	tion A	Section B	Section C	
Units	COs	K-Level	Μ	CQs	Either/ or Choice	Open	
			No. Of	No. Of K-Level		Choice No.of	
			Question		No. of Question	Question	
1	CO1	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)	
2	CO2	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)	
3	CO3	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)	
4	CO4	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)	
5	CO5	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)	
No of Q	No of Questions to be asked		10		10	5	
No of Questions to be answered		10		5	3		
Marks for each Question			1		4	10	
Total n	narks for	each Section	10		20	30	

K1 - Remembering and recalling facts with specific answers

K2 - Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

Distribution of Section –wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	l Marks	% of Marks without Choice
K1	10	-	-	10	10
K2	-	40	-	40	40
К3	-	-	50	50	50
Total Marks	10	40	50	100	100

Lesson Plan

Unit	Current Electricity	11 Hours	Mode			
	a) Current and current density	1				
	b) Expression for current density	1				
	c) Ohm's law and electrical conductivity	1	Lecture			
	d) Kirchhoff's laws	1	Lecture With			
I	e) Wheatstone's network- condition for balance	2	PPT			
1	f) Carey-Foster's bridge- measurement of	2	Group			
	resistance - measurement of specific resistance		Discussion			
	g) Potentiometer –Principle	1	Lecture With			
	h) calibration of Voltmeter	1	Demo Seminar			
	i) Calibration of Ammeter	1	bennnar			
Unit	Electromagnetism	11 Hours	Mode			
	a) Electromagnetic Induction	1				
	b) Faraday's laws	1				
	c) Self Induction	1	Lecture Lecture With			
П	d) Mutual Induction	2	PPT			
11	e) Coefficient of Coupling	2	Group			
	f) E.M.F.induced in a coil rotating in a magnetic	2	Discussion			
	field Mean value - RMS value - Peak value		Lecture With			
	g) A.C. Circuits LCR in series and parallel		Demo Saminan			
	circuits- impedance – resonant frequency.	2	Seminar			
Unit	Interference	12 Hours	Mode			
	a) Interference	2	Lecture			
	b) conditions for interference maxima and	2	Lecture With			
Ш	minima		PPT			
111	c) Air wedge – thickness of a thin wire	2	Group			
	d) Newton's rings	2	Discussion			
	e) determination of wavelength using Newton's	2	Lecture With Demo			
	rings.	2	Seminar			
	f) Determination of wavelength of light	2	Semina			
Unit	Diffraction	11 Hours	Mode			
	a) Diffraction	2	Lecture			
			Lecture With			
IV	b) Types of Diffraction	-				
	c) Difference between interference and	2	Group Discussion			
	diffraction		Lecture With			
	d) Plane diffraction grating	2				

	e) experiment to determine wavelength of a Spectral line using the transmission Grating.	3	Demo Seminar
Unit	Spectroscopy	11 Hours	Mode
	a) Infrared spectroscopy	1	
	b) IR-sources and detector & uses	2	Lecture
	c)Ultraviolet spectroscopy	1	Lecture With
V	d) UV- sources and uses	2	PPT Group
	e) Raman effect - Experiment(Wood's apparatus)	2	Discussion Lecture With
	f) Quantum theory of Raman effect	1	Demo
	g) applications of Raman effect	2	Seminar

Course Designed by 1. .Dr. K. Ramavenkateswari 2. Dr. K. Jayabala

Programme	B.Sc	B.Sc Programme Code UPH				
Course Code	20UPHC41	20UPHC41 Number of Hours/Cycle 4				
Semester	IV	Max. Marks	10	0		
Part	III	Credit	4			
	Core Cour	se VI				
Course Title	Course Title Physical Optics and L T P Spectroscopy					
Cognitive Level K1, K2 & K3 55 2			3			
L-Lecture T-	- Tutorial P- Prac	tical	•			

Preamble

To provide the optical phenomena like interference, diffraction, and polarization lays the foundation for an understanding of interferometers and also to gain the knowledge of Spectroscopic studies.

Unit I	Interference	11 Hours
	Conditions for interference – Theory of interference fringes – colours of	
	thin films- interference due to reflected light (thin films) - wedge shaped	
	thin film – theory – determination of diameter of a thin wire by Air wedge –	
	Newton's rings by reflected light – Determination of wavelength of light -	
	Michelson's Interferometer – theory and its Application (Measurement of	
	wavelength).	
Unit II	Diffraction	11 Hours
	Fresnel's diffraction –Rectilinear propagation of light – zone plate –action	
	of zone plate -diffraction at circular aperture (Theory) – opaque circular	
	disc – Fraunhofer diffraction at single slit – Double slit – Plane diffraction	
	grating – theory of plane transmission grating - experiment to determine	
	wavelength of a Spectral line using the transmission Grating.	
Unit III	Polarisation	11 Hours
	Double refraction — Huygens's explanation of double refraction in uniaxial crystals— Nicol Prism — Nicol Prism as polarizer and analyzer -Plane, elliptically and circularly polarized light— Quarter wave plates and Half wave plates — Production and detection of plane, circularly and elliptically polarized light- Optical activity— Fresnel's explanation of optical activity — Specific rotatory power —Laurent's half shade polarimeter.	
Unit IV	Spectroscopy	11 Hours
	Infrared spectroscopy – sources and detector – uses – ultraviolet spectroscopy – sources – quartz spectrograph –Rayleigh's Scattering - applications - Raman Spectroscopy – Quantum theory of Raman effect – applications.	
Unit V	Magnetic resonance Spectroscopy	11 Hours
	Nuclear magnetic resonance -Theory- Experimental arrangement-	
	Applications-Nuclear quadrupole resonance – Instrumentation-	
	Applications Electron spin resonance spectroscopy (Qualitative study).	

Pedagogy

These concepts are better understood when lectures are accompanied with hands on experiments, Group discussion and Learning aids.

Text Books

- 1. Subramanyam and Brijlal. S., (2010), *A text book of Optics*, Chand and Company, 25th Edition, New Delhi .
 - Unit I: Chapter 14: 14.4.1,14.7,
 - Chapter 15: 15.5.4,15.2.1,15.5,
 - Unit II : Chapter 17: 17.1 -17.5.1,17.8.,17.9
 - Chapter 18: 18.2, 18.4, 18.7, 18.7.1, 18.7.6
- 2. Murugeshan.R.,(2008), *Optics and Spectroscopy*, Sultan Chand and Company, New Delhi.
 - Unit I : Chapter 2: 2.7 2.9,2.11,2.12.

Unit – III : Chapter 4: 4.5,4.6,4.8,4.10,4.12 - 4.17,4.19,4.20.

Unit – IV : Chapter 5 : 5.1-5.8.

Unit – V : Chapter 5 : 5.9 ,5.10,5.12.

Reference Books

- 1. Gupta S.L., Kumar.V and Sharma.R.C.,(2009), *Elements of Spectroscopy*, Pragati Prakashan, Meerut.
- 2. Aruldhass.G., (2007), *Molecular structure and spectroscopy*, PHI Private limited, New Delhi.
- 3. Banewell C.N., (2006), *Introduction to Molecular Spectroscopy.*, TMH Publishing company, New Delhi.
- 4. Ajoy Ghatak, (2009), Optics, TMH Publishing Company, New Delhi.

E-Resources

 $1.https://www.texasgateway.org/resource/172-applications-diffraction-interference-and-coherence 2.https://www.ece.gatech.edu/sites/default/files/documents/stepup/2017/interference_and_diffraction.pdf$

3.https://www.khanacademy.org/science/organic-chemistry/spectroscopy-jay/proton-

nmr/v/introduction-

to-proton-nmr

4. https://edu.rsc.org/resources/nuclear-magnetic-resonance-nmr-spectroscopy/11330.article 5. https://onlinelibrary.wiley.com/journal/1097458xa

Course Outcomes

At the end of the course, students would be able to

CO1	Utilize the ideas of Interference
CO2	Make use of the Diffraction phenomena
CO3	Identify the fundamental concepts of Polarization
CO4	Apply Spectroscopy principles
CO5	Organize the Magnetic Resonance Spectroscopy techniques

Mapping of Programme Specific Outcomes [PSOs] with Course Outcomes [COs]

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	3	3	3	3	3	2	1	1	1	1	1	1
CO2	3	3	3	3	3	2	1	1	1	1	1	1
CO3	3	2	2	2	1	2	1	1	1	1	1	1
CO4	3	1	2	1	1	2	1	1	1	1	1	1
CO5	3	2	1	1	1	1	1	1	1	1	1	1

3. High; 2. Moderate; 1. Low

Articulation Mapping - K Levels with Course Outcomes (COs)

			Secti	ion A	Section B	Section C
T Insida	CO		MO	CQs	Either/ or Choice	Open
Units	COs	K-Level	No. Of Questions	No. Of K-Level		Choice No.of Question
1	CO1	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
2	CO2	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
3	CO3	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
4	CO4	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
5	CO5	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
No of Questions to be asked		10		10	5	
No of Questions to be answered		10		5	3	
Marks for each Question			1		4	10
Total ma	arks for each	Section	10		20	30

K1 - Remembering and recalling facts with specific answers

K2 - Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without Choice
K1	10	-	-	10	10
K2	-	40	-	40	40
К3	-	-	50	50	50
Total Marks	10	40	50	100	100

Distribution of Section -wise Marks with K Levels

Lesson Plan

Unit	Interference	11 Hours	Mode
	a) Conditions for interference- Theory of interference fringes	2	
	b) colours of thin films	1	
	c) interference due to reflected light (thin films)	1	Lecture
	d) wedge shaped thin film – theory	2	Lecture With
Ι	e) determination of diameter of a thin wire by Air wedge	1	PPT Group
	f) Newton's rings by reflected light – Determination of wavelength of light	2	Discussion Lecture With Demo
	g)Michelson's Interferometer – theory and its Application (Measurement of Wavelength).	2	Seminar
Unit	Diffraction	11 Hours	Mode
	a) Fresnel's diffraction	1	
	b) Rectilinear propagation of light	1	
	c) Zone plate – action of Zone plate	2	
	d) diffraction at circular aperture (Theory)	1	Lecture
II	e) opaque circular disc	1	Lecture With PPT
	f) Fraunhofer diffraction at single slit	1	Group
	g) Fraunhofer diffraction at double slit	1	Discussion Lecture With Demo
	h) Plane diffraction grating – theory of plane transmission grating	2	Seminar
	i) experiment to determine wavelength of a Spectral line using the transmission Grating.	1	
Unit	Polarisation	11 Hours	Mode
III	a) Double refraction — Huygens's explanation of double refraction in uniaxial crystals—	2	

	b) Nicol Prism – Nicol Prism as polarizer and analyzer	1	
	c) Plane, elliptically and circularly polarized light	2	
	d) Quarter wave plates and Half wave plates	1	Lecture Lecture With PPT
	e) Production and detection of plane, circularly and elliptically polarized light	2	Group Discussion Lecture With Demo
	f) Optical activity– Fresnel's explanation of optical activity	1	Seminar
	g) Specific rotatory power –Laurent's half shade polarimeter	2	
Unit	Spectroscopy	11 Hours	Mode
	a) Infrared spectroscopy	1	
	b) IR - sources and detector – uses	2	Lecture
	c) ultraviolet spectroscopy – sources	1	Lecture With
IV	d) quartz spectrograph	1	PPT Group
	e) Rayleigh's Scattering - applications	2	Discussion Lecture With Demo
	f) Raman Spectroscopy	2	Seminar
	g)Quantum theory of Raman effect – applications.	2	
Unit	Nuclear magnetic resonance	11 Hours	Mode
	a) Nuclear magnetic resonance – Theory-	1	Lecture Lecture With
	b) NMR- Experimental arrangement	2	PPT
	c) NMR - Applications	2	Group
V	d) Nuclear quadrupole resonance	2	Discussion Lecture With
	e) Nuclear quadrupole resonance – Instrumentation- Applications	2	Demo Seminar
	f) Electron spin resonance spectroscopy (Qualitative study).	2	

Course Designed by

1.Dr. S. Saravana

2. Mr. R. Jayaraman

Programme	B.Sc Programme Code U				
Course Code	20UPHA41	1 Number of Hours/Cycle		4	
Semester	IV Max. Marks		100		
Part	III Credit		4		
	Allied Cours	se - IV			
Course Title	Allied Physic	cs - IV L	Т	Р	
Cognitive Level	K1, K2 & K	3 55	3	2	

L-Lecture *T*-Tutorial *P*-Practical

Preamble

To provide knowledge about the nuclear models and their roles in explaining the ground state properties of the nucleus and also leads to understand the junction diodes, transistor characteristics and the synthesis of digital circuits.

Unit I	Atomic Physics	11 Hours
	Introduction (atom model) - Bohr atom model (qualitative)Atomic	
	excitation -Ionization potential- Vector atom model -Quantum	
	Numbers associated with the vector atom model- Coupling	
	Schemes- Pauli's Exclusion principle - applications.	
Unit II	Nuclear Physics	11 Hours
	Nucleus – Nuclear properties – Mass defect – Binding energy –	
	Nuclear fission - Nuclear Reactor – atom bomb - Nuclear fusion –	
	Proton Proton cycle - Carbon nitrogen cycle – hydrogen bomb.	
Unit III	Modern Physics	11 Hours
	Frames of Reference-Types-Galilean Transformation	
	equations - Michelson Morely's experiment - Significance of	
	negative result - Postulates of special theory of relativity -	
	Lorentz transormation equations (No derivation) - Length	
	contraction - Time dilation - Variation of mass with velocity -	
	Einstein's mass - energy relation (Simple derivation)	
Unit IV	Analog Electronics	11 Hours
	Formation of PN junction diode – forward and reverse biasing of a	
	junction diode-Zener diode - forward and reverse biasing of a zener	
	diode - LED - Bridge rectifier –filter circuits - Transistor – Working	
	of npn transistor – Transistor Characteristics – CE Configuration	
	only – Hartley oscillator - modulation.	
Unit V	Digital Electronics	11 Hours
	Number system – Decimal – Binary – conversion of one number	
	system to another number system- Binary addition and subtraction-	
	Logic gates – OR, AND, NOT, XOR, NAND and NOR gates – truth	
	tables –Laws and theorems of Boolean's algebra – De Morgan's theorems.	

Pedagogy

These concepts are better understood when lectures are accompanied with chalk and talk method, demonstration, Power Point Presentation and Learning aids.

Text Books

1.Murugeshan.R., Kiruthiga Sivaprasath.,(2010),*Modern Physics*,Sultan Chand and Company, New Delhi.
Unit – I: Chapter 6: 6.1, 6.4, 6.8, 6.9, 6.12, 6.13, 6.14, 6.15
Unit – II: Chapter 27: 27.1, 27.3, 27.4, Chapter 35: 35.1, 35.2, 35.5, 35.6, 35.7, 35.8, 35.9.
Unit – III: Chapter 1: 1.1, 1.2, 1.4, 1.6, 1.7, 1.8, 1.9, 1.10, 1.13, 1.14.
Murugeshan.R., (2015), Electricity and Electroics, Sultan Chand and Company, New Delhi.
Unit – IV: Chapter 5: 5.1, 5.2, 5.4 - 5.10, 5.12, 5.15, 5.16.

3. Vijayendran. V., (2007), Introduction to integrated

Electronics, S. Viswanathan Printers and publishers Private., Limited, Chennai.

Unit – V : Chapter 1: 1.1 – 1.4,

Chapter 2: 2.1, 2.2 Chapter 4: 4.3, 4.7, 4.8

Chapter 5: 5.1, 5.2

Reference Books

1. Donald P Leach, Albert Paul Malvino and Goutam Saha., (2007), *Digital Principles and Applications*, Tata McGraw Hill Publishing Company Limited, New Delhi.

2. Kulkarni. V. W., (2008), Atomic and Nuclear Physics, Himalaya Books Private Limited, Mumbai.

3. Jacob Millman, Christos C.Halkias., (2008), *Integrated Electronics (Analog and Digital circuits and systems)* Tata McGraw Hill Publishing Company Limited, New Delhi.

E-Resources

- 1. https://nptel.ac.in/courses/115/104/115104043/
- 2. https://www.khanacademy.org/science/physics/quantum-physics/in-in-nuclei/v/types- of-decay
- 3. https://worldscientific.com/worldscibooks/10.1142/11209
- 4. https://www.tutorialspoint.com/digital_circuits/digital_circuits_logic_gates.htm
- 5. https://www.electronicsforu.com/resources/electronic-devices-and-circuit-theory

Course Outcomes

At the end of the course, students would be able to

CO1	Build the concepts of Atomic Physics
CO2	Develop the ideas of Nuclear Physics
CO3	Organize the theories of Modern Physics
CO4	Experiment with Analog Electronic techniques
CO5	Make use of theorems of Digital Electronics

Mapping of Programme Specific Outcomes [PSOs] with Course Outcomes [COs]

	11 6											
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	3	1	2	2	1	1	1	1	1	1	1	1
CO2	3	1	1	1	1	2	2	2	1	2	2	1
CO3	3	2	2	2	1	1	1	1	1	1	1	1
CO4	3	3	2	2	2	3	2	2	1	1	1	1
CO5	3	3	2	3	3	3	2	2	1	1	1	1

3. High; 2. Moderate; 1. Low

Articulation Mapping - K Levels with Course Outcomes (COs)

			S	Section A	Section B	Section C	
Units	COs	COs K-Level	MCQs		Either/ or Choice	Open Choice	
			No.	K-Level	No. of	No.of	
			Of		Question	Question	
1	CO1	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)	
2	CO2	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)	
3	CO3	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)	
4	CO4	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)	
5	CO5	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)	
No of Q	uestions to b	e asked	10		10	5	
No of Questions to be answered		10		5	3		
Marks f	Marks for each Question		1		4	10	
Total m	arks for each	Section	10		20	30	

K1 - Remembering and recalling facts with specific answers

K2 - Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without Choice
K1	10	-	-	10	10
K2	-	40	-	40	40
K3	-	-	50	50	50
Total Marks	10	40	50	100	100

Distribution of Section –wise Marks with K Levels

Lesson Plan

Unit	Atomic Physics	11 Hours	Mode
	a) Introduction (atom model)	2	
	b) Bohr atom model (qualitative)	1	
	c) Atomic excitation -Ionization potential	1	
Ι	d) Vector atom model	2	Lecture Lecture With PPT
	e) Quantum Numbers associated with the vector atom model	2	Group Discussion Lecture With
	f) Coupling Schemes	1	Demo
	g) Pauli's Exclusion principle - applications	2	Seminar
Unit	Nuclear Physics	11 Hours	Mode
	a) Nucleus – Nuclear properties	1	
	b) Mass defect – Binding energy	1	
	c) Nuclear fission	1	
	d) Nuclear Reactor	1	
п	e) Atom bomb	1	Lecture Lecture With PPT
	f) Nuclear fusion	1	Group Discussion
	g) Proton Proton cycle	2	Lecture With Demo
	h) Carbon nitrogen cycle	2	Seminar
	i) Hydrogen bomb	1	
Unit	Modern physics	11 Hours	Mode
	a) Frame of Reference	1	
	b) Galilean Transformation equations	1	
	c) Michelson Morely's experiment - Significance of negative result	2	Lecture Lecture With PPT
III	d) Postulates of special theory of relativity	1	Group Discussion Lecture With
	e) Lorentz transormation equations (No derivation)	1	Demo Seminar
	f) Length contraction - Time dilation	2	
	g) Variation of mass with velocity	1	

	h) Einstein's mass - energy relation (Simple derivation)	2	
Unit	Analog Electronics	11 Hours	Mode
	a) Formation of PN junction diode	1	
	b) forward and reverse biasing of a junction diode	1	
	c) Zener diode – forward and reverse biasing of a zener diode	2	Lecture
13.7	d) LED	1	Lecture Lecture With PP Group Discussio Lecture With Demo Seminar Mode
IV	e) Bridge rectifier –filter circuits	1	
	f) Transistor – Working of npn transistor	2	
	g) Transistor Characteristics – CE Configuration only	1	Lecture Lecture With PP Group Discussion Lecture With Demo Seminar Mode Lecture Lecture Lecture With PP Group Discussion Lecture With Demo
	h)Hartley oscillator- modulation	2	
Unit	Digital Electronics	11 Hours	Mode
	a) Number system – Decimal – Binary	2	
	b) conversion of one number system to another number system	2	Lecture Lecture With PP Group Discussion Lecture With Demo Seminar Mode Lecture Lecture Lecture Lecture With PP Group Discussion Lecture With Demo
	c) Binary addition and subtraction	2	
V	d) Logic gates – OR, AND, NOT, XOR, NAND and NOR gates – truth tables	2	
	e) Laws and theorems of Boolean's algebra	1	
	f) De Morgan's theorems.	2	

Course Designed by 1. Dr. T.Rajesh Kumar 2. Dr.P.Uma Mageshwari

Extra Credit Value Added Courses

Programme	B.Sc	Programme Code	РНУ
Course Code	20CPHY31	Number of Hours/Semester	30
Semester	III	Max. Marks	50
Part		Credit	
	Value Addec	l Course I	
Course Title	Physics for A	A11	
Cognitive Level			

Preamble

To provide basic ideas about units, dimensions, uses of dimensions, types of motion, terms related to motion, balanced forces, unbalanced forces, laws of motion, work, types of energy, law of conservation of energy, production of sound, propagation of sound and properties of sound.

Unit I	Units and Dimensions					
	Types of Physical quantities - Types of Units - S.I.Units - Definitions-					
	Dimension formula for Distance,					
	Displacement, Area, Volume, Mass, Density, Speed, Velocity, Accelaration,					
	Momentum, Force - Uses of dimensions.					
Unit II	Motion					
	Motion – Describing motion - Motion along a straight line-Uniform and Non Uniform					
	motion - Distance and displacement – Speed- Speed with direction – Velocity - Rate of change of velocity – Accelaration.					
Unit III	Force and laws of Motion					
	Balanced and unbalanced forces – First law of motion – Inertia and mass – Second law of motion – Expression for force - Third law of motion – Examples.					
Unit IV	Work , Energy and Power					
	Work – Scientific conception of work – Work done by a constant force - Energy – Types					
	of energy – Kinetic energy – Potential energy – Law of conservation of energy.					
Unit V	Sound					
	Production of Sound – Propagation of Sound – Characteristics of sound waves –					
	reflection of sound – Echo – Reverberation – Uses of multiple reflection of sound – Range					
	of hearing – Applications of ultrasound – SONAR.					

Text Book

1. Material Prepared by Physics Department

Reference Book

1. Poonam Yadav., (2010)., *Understanding Physics.*, Discovery publishing house private limited , New Delhi.

Programme	B.Sc	Programme Code	СРНУ
Course Code	20CPHY41	Number of Hours/Semester	30
Semester	IV	Max. Marks	50
Part		Credit	
	alue Added C	Course - II	
Course Title	Sources of E	Energy	
Cognitive Level			

Preamble

To provide basic ideas about conventional sources of energy, hydro power technologies, fundamentals of wind energy, non conventional sources of energy, types of non conventional sources of energy, ocean energy, characteristics of ocean energy and ocean thermal energy.

Unit I	Conventional Sources of energy
	Conventional sources of energy – thermal power plant – hydro power plant – Wind
	energy.
Unit II	Hydro energy
	Hydro power resources - hydropower technologies - environment impact of hydro
	power sources.
Unit III	Wind energy harvesting
	Fundamentals of wind energy, wind turbines and different electrical machines in wind
	turbines
Unit IV	Non conventional sources of energy
	Non Conventional sources of energy - Solar energy - Tidal energy - wave energy -
	Ocean Thermal energy – Geo thermal energy – Nuclear energy.
Unit V	Ocean energy
	Ocean energy potential against wind and solar, wave characteristics and statistics – wave energy devices – Ocean Thermal Energy – Osmotic power – Ocean Biomass.

Text Book

1. Material prepared by physics Department

Reference Books

1.Rai.G.D., Non conventional energy sources, Krishna Publishers, New Delhi.

2.Jayakumar.P.,(2009),Solar energy : Resource Assessment Handbook.

3. Agarwal. M.P., Solarr Energy, Sultan Chand and Company Limited,

Programme	B.Sc	Programme Code	UPH
Course Code	20UPHC4P	Number of Hours/Cycle	2
Semester	IV	Max. Marks	100
Part	III	Credit	2
		Core Practical - II	
Course Title	Major Physic	cs Practicals - II	

List of Experiments (Any 12)

- 1. Thickness of the wire Air wedge
- 2. Comparison of Capacitances De Sauty's Bridge
- 3. Comparison of emf's Potentiometer
- 4. Determination of B_H Axial coil
- 5. Refractive index of the prism Spectrometer
- 6. Figure of merit Table Galvanometer
- 7. Determination of R Newton's Rings
- 8. Determination of m Axial coil
- 9. Inductance of the coil Owen's Bridge
- 10. Wavelength of the different colours (N and λ) Grating normal incidence
- 11. Comparison of Capacitances Ballistic Galvanometer
- 12. Wavelength of the different colours (N and λ) Grating minimum deviation
- 13. Figure of merit Ballistic Galvanometer
- 14. Resistivity of a given coil Carey Foster's bridge

Programme	B.Sc	Programme Code	UPH
Course	20UPHA4P	Number of Hours/Cycle	2
Semester	Π	Max. Marks	100
Part	III	Credit	2
		Allied Practical - II	
Course Title	Allied Physi	cs Practicals - II	

List Of Experiments (Any 12)

- 1. LCR Series Resonance Circuit
- 2. LCR Parallel Resonance Circuit
- 3. Junction diode characteristics
- 4. Zener diode characteristics & break down voltage
- 5. Thickness of a wire Air wedge
- 6. Determination of R Newton's Rings
- 7. AND, OR, NOT Truth Table Verification Logic Gates Discrete Components
- 8. N and λ by Normal Incidence Spectrometer
- 9. Dispersive power of prism Spectrometer
- 10. Refractive index of the prism Spectrometer
- 11. π Filter Bridge Rectifier
- 12. Comparison of Capacitances De Sauty's Bridge
- 13. Figure of merit Ballistic Galvanometer
- 14. Voltage and current sensitiveness Ballistic Galvanometer

Programme	B.Sc	Programme Code	UPH	UPH	
Course Code	20UPHC51	Number of Hours/Cycle	4	4	
Semester	V	Max. Marks	100	100	
Part	III	Credit	4	4	
	CORE COU	RSE VII			
Course Title	Relativity an Mechanics	Relativity and Quantum Mechanics			Р
Cognitive Level	Upto K3	Upto K3		3	2

L-Lecture T-Tutorial P-Practical

Preamble

To provide basic concepts of General theory of relativity, Experimental set up of Michelson interferometer and discussion about the result, Black body radiation, limitations of classical physics, Uncertainty principle and diffraction of electron through a single slit, Basics of wave mechanics, time independent and time dependent Schrodinger equations, eigen value and eigen function, applications of Schrodinger equation. It will equip the students with required pre requisites to understand quantum phenomena.

Unit I	Relativity - I	11Hours
	Frames of reference - Inertial frames of reference - Galilean	
	transformation - Michelson Morley experiment - Explanation of	
	the negative result- Newtonian relativity - Types of frames of	
	reference - Postulates of special theory of relativity - Explanation	
	- Lorentz transformation equations - Derivation.	
Unit II	Relativity - II	11 Hours
	Lorentz - Fitzgerald length contraction - Derivation - Examples	
	- Time dilation - Derivation - The Twin Paradox - Addition of	
	Velocities - Relativity of Simultaneity - Variation of mass with	
	velocity - Derivation - Explanation - Einstein's mass energy	
	relation - Derivation - Examples - Relation between total energy,	
	rest mass energy and the momentum.	
Unit III	Dual nature of Matter waves	11 Hours
	Limitations of classical theory - Planck's quantum theory of black	
	body radiation- Matter waves - De Broglie's theory - De Broglie	
	wavelength - Experimental verification - Davisson and Germer	
	experiment - G.P. Thompson's experiment with relativistic	
	correction - Wave velocity, group velocity & their relations -	
	Heisenberg's uncertainty principle through experiment	
	illustration - Diffraction of electron through a single slit.	44.77
Unit IV	Schrodinger wave Equation	11 Hours
	Basic postulates of wave mechanics - Derivation of time	
	dependent form of Schrodinger wave equation - Derivation of	
	time independent form of Schrodinger wave equation - Properties	
	of the wave function - Physical significance of ψ - Eigen	
	functions and Eigen values - Energy function - Expectation value	
T T •4 T 7	- Normalization of wave function of simpler types.	11 11
Unit V	Applications of Schrodinger wave Equation	11 Hours
	Schrodinger equation for free particle in one dimension potential	
	box - Its Eigen functions and Eigen values - Extension to three	
	dimensions - Linear harmonic oscillator - zero point energy.	

Pedagogy

These concepts are better understood when lectures are accompanied with Class Room Lectures, chalk and talk, Power point presentation and Group Discussion.

Text Books:

1. Murugesan .R, (2006), "Mechanics & Relativity", Santha Publications.

UNIT – I: Page No: 17 – 22, 30 – 36. UNIT – II: Page No: 36 – 56

2. Murugesan.R, (2002), "Theoretical Physics", Santha Publications.

UNIT – III: Page No: 94 – 97, 108 – 127 UNIT – IV: Page No: 131 – 136. UNIT – V: Page No: 136 – 144.

Reference Books:

1. Sathyaprakash.R., (1994),"Quantum Mechanics", Ratan Prakasan Mandir.

- 2. Mathews.P.M and Venkatesan.K , (2011), "A Text Book of Quantum Mechanics", Tata McGraw Hill Education Private Limited, New Delhi.
- 3. Gupta & Kumar JayPrakash, (2007),"Quantum Mechanics", Nata & Company.

E-Resources

- http://www.physics.gla.ac.uk/~dmiller/lectures/RQM_2008.pdf
- http://www.nucleares.unam.mx/~alberto/apuntes/fgross.pdf
- http://home.iitk.ac.in/~dipankar/RelativisticQM.pdf
- http://websites.umich.edu/~ners311/CourseLibrary/book.pdf

Course Outcomes

At the end of the course, students would be able to

Unit I	CO1	Organize the concepts of Galilean Transformation
Unit II	CO2 Build the Ideas of length contraction and time dilation and a determine Einstein mass energy relation	
Unit III	I CO3 Show and Demonstrate the concept of Dual nature of matter waves	
Unit IV	CO4	Illustrate the concept of wave mechanics
Unit V	CO5	Apply Schrodinger Wave equations

Mapping of Programme Specific Outcomes [PSOs] with Course Outcomes [COs]

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	3	2	2	2	2	1	1	1	1	1	1	1
CO2	3	2	2	2	2	1	2	1	1	1	1	1
CO3	3	3	2	2	2	2	1	1	1	1	1	1
CO4	2	2	3	3	2	2	1	2	1	1	1	1
CO5	2	2	3	3	1	1	2	1	1	1	1	1
CO5	2	2	3	3	1	1	2	1	1	1	1	İ

1-Low 2- Moderate 3- High

BLUE PRINT – End Semester Examinations

Units COs			Secti	on A	Section B	Section C
		K-Level	мс	ÇQs	Either/ or Choice	Open Choice
			No. Of Questions	K-Level	No. of Question	No.of Question
1	CO1	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
2	CO2	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
3	CO3	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
4	CO4	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
5	CO5	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
No of Questions to be asked		10		10	5	
No of Questions to be		10		5	3	
Marks for each Question		1		4	10	
Total marks for each Section			10		20	30

Articulation Mapping - K Levels with Course Outcomes (COs)

K1 – Remembering and recalling facts with specific answers

K2 – Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

Distribution of Section –wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without Choice
K1	10	-	-	10	10
K2	-	40	-	40	40
K3	-	-	50	50	50
Total Marks	10	40	50	100	100

Lesson Plan

Unit	Relativity - I	Hours (11)	Mode
	a) Frames of reference - Inertial	2	
	frames of reference		
	b) Galilean transformation -		
	Michelson Morley Experiment	2	Lecture
	c) Explanation of the negative result		
_	- Newtonian relativity	2	Group Discussion
I	d) Types of frames of reference		Lecture With PPT
		1	
	e) Postulates of special theory of relativity - Explanation	2	Lecture With Demo
	f)Lorentz transformation Equations -	2	Seminar
	Derivation		
Unit	Relativity - II	Hours	Mode
	Miativity - 11	(11)	mout
п	a) Lorentz Fitzgerald Length	2	Lecture
	contraction - Derivation -		
	Explanation – Examples		Group Discussion

	b) Time dilation - Derivation -		Lecture With PPT
	Explanation	2	Leature With Domo
	c) The Twin Paradox – Addition of Velocities	1	Lecture With Demo
	d) Relativity of Simultaneity -	2	Seminar
	Variation of mass with velocity -		
	Derivation - Explanation		
	e) Einstein's mass energy relation – Derivation – Explanation –	2	
	Examples		
	f) Relation between total energy, rest mass energy and the momentum.	2	
Unit	Dual nature of Matter waves	Hours (11)	Mode
	a) Limitations of classical theory	1	
	b) Planck's Quantum theory of black body radiation - Matter waves	2	
	c) De Broglie's theory – De Broglie wavelength – Experimental verification	2	Lecture With Group
III	d) Davisson's and Germer experiment - G.P Thomson's experiment with relativistic correction	2	Discussion Lecture With PPT
	e) wave velocity, group velocity & their relations	2	Lecture
	 f) Heisenberg's uncertainty principle through experiment illustration - Diffraction of electron through a single slit. 	2	Seminar
Unit	Schrodinger wave Equation	Hours (11)	Mode
	a) Basic postulates of wave mechanics	1	Lastura
	b) Derivation of time dependent form of Schrodinger wave equation	2	Lecture
	c) Derivation of Time independent		Seminar
IV	form of Schrodinger wave equation d) Properties of the wave function	2 2	Lecture With PPT
11			
	e) Physical significance of ψ	1	
	f) Eigen function and Eigen value - energy function	2	
	g) Expectation value and	1	
	normalization of wave function of		
	simpler types.		
Unit	Applications Schrodinger wave Equation	Hours (11)	Mode
	a) Schrodinger equation for a free particles in one dimensional potential box	2	Lecture
V	b) Eigen functions and Eigen values of free particles in one dimensional potential box	2	Group Discussion
	c) Schrodinger equation for a free particles in three dimensional	2	Lecture With PPT

d) Eigen functions and Eigen values of free particles in three dimensional potential box	2
e) Linear harmonic oscillator	2
f) Zero point energy	1

Course Designed by 1.Dr. S. Saravanan

2.Dr.R.Jayaraman

Programme	B.Sc Programme Code		UP	H				
Course Code	20UPHC52 Number of Hours/Cycle		4					
Semester	V Max. Marks		100					
Part	t III Credit		4					
	CORE COU	RSE VIII						
Course Title	Atomic Phys	sics	L	Т	Р			
Cognitive Level Upto K3			55	3	2			
L-Lecture $T-Tutorial$	L – Lecture T – Tutorial P – Practical							

Preamble

To provide an introductory account about the atomic structure and the impact of X-rays.

Unit I	Band Theory Of Solids	11 Hours
	Determination of the electronic charge - Millikan's oil drop	
	method - The free electron theory of metals - Expression	
	for electrical conductivity - Expression for thermal	
	conductivity - Wiedman-Franz's law - Band theory of	
	solids - classification of solids on the basis of band theory.	
Unit II	Positive Rays	11 Hours
	Discovery - Properties - Analysis - Thomson's parabola	
	method - Aston's mass spectrograph - Bainbridge's mass	
	spectrograph - Dempster's mass spectrograph - Mass defect	
	and packing fraction - Polarization of X-rays (Thomson's	
	Formula) - Determination of number of electrons per atom.	
Unit III	Atomic Structure	11 Hours
	Introduction - Rutherford Nuclear Atom Model - Bohr	
	Atom Model - Sommerfeld's Relativistic Atom Model -	
	The Vector Atom Model - Quantum Numbers associated	
	with the vector Atom Model - Coupling Schemes - The	
	Pauli's Exclusion Principle.	
Unit IV	Atoms in external field	11 Hours
	X rays - Production of X-Rays - X-Rays Spectra - Main	
	features of Continuous X-Ray Spectrum - Characteristics	
	X-Ray Spectrum - Moseley's Law and its importance -	
	Compton's Scattering - Experimental Verification -	
	Zeeman Effect - Lorentz classical theory of normal Zeeman	
TT •4 \$7	Effect - Stark Effect	11 11
Unit V	The Photo Electric Effect	11 Hours
	Introduction - Nature of photo particles - Lenard's method	
	to determine e/m for photoelectrons - Experimental	
	investigations on the photoelectric effect Laws of	
	Photoelectric emission - Failure of the electromagnetic	
	theory - Einstein's photoelectric equation - Photoelectric	
	cells.	

Pedagogy

These concepts are better understood when lectures are accompanied with Class Room Lectures, chalk and talk, Power point presentation and Group Discussion.

Text Book:

1. Murugesan .R, Kiruthiga Sivaprasath, (2010), "Modern Physics", Sultan Chand and Company Limited.

UNIT – I: Page No: 35 - 44 UNIT – II: Page No: 48 – 60 UNIT – III: Page No: 65 – 67, 71 – 74, 88 - 97 UNIT – IV: Page No: 121 -122, 132 – 138, 108 – 110, 116 – 117 UNIT – V: Page No: 150 - 159

Reference Books:

- 1. Dr.Kulkarni.V.M, (2008), "Atomic and Nuclear Physics", Himalaya Publishing House.
- 2. Joseph Mohan, (2010), "Atomic Physics", Apple Academic Press Incorporated.
- 3. Kenneth S.Krane, (1998) "Modern Physics", John Willey & sons.

E-Resources

- https://users.physics.ox.ac.uk/~ewart/Atomic%20Physics%20lecture%20notes%2 0C%20port.pdf
- https://ncert.nic.in/ncerts/l/leph204.pdf
- https://gacbe.ac.in/pdf/ematerial/18BPH63C-U4.pdf.

Course Outcomes

At the end of the course, students would be able to

Unit I	CO1	Illustrate the concepts of Band Theory Of Solids
Unit II	CO2	Build the Ideas of Positive Rays
Unit III	CO3	Organize the concept of Atomic Structure
Unit IV	CO4	Construct Zeeman effect using Lorentz classical theory
Unit V	CO5	Experiment with investigation of Photo Electric Effect

Mapping of Programme Specific Outcomes [PSOs] with Course Outcomes [COs]

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	3	2	2	2	2	1	1	1	1	1	1	1
CO2	3	2	2	2	2	1	2	1	1	1	1	1
CO3	3	3	2	2	2	2	1	1	1	1	1	1
CO4	2	2	3	3	2	2	1	2	1	1	1	1
CO5	2	2	3	3	1	1	2	1	1	1	1	1

1-Low 2- Moderate 3- High

BLUE PRINT – End Semester Examinations

Articulation Mapping - K Levels with Course Outcomes (COs)

			Secti	on A	Section B	Section C
Units	COs	K-Level	MCQs		Either/ or Choice	Open Choice
			No. Of Questions	K-Level	No. of Question	No.of Question
1	CO1	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
2	CO2	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
3	CO3	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
4	CO4	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
5	CO5	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
No of 0	Questions	s to be asked	10		10	5
No of Questions to be		10		5	3	
Marks for each Question		1		4	10	
Total 1	marks for	· each	10		20	30

K1 – Remembering and recalling facts with specific answers

K2 – Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

Distribution of Section –wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without Choice
K1	10	-	-	10	10
K2	-	40	-	40	40
K3	-	-	50	50	50
Total Marks	10	40	50	100	100

Lesson Plan

Unit	Band Theory Of Solids	Hours (11)	Mode
	a) Determination of the electronic charge; Millikan's oil drop method	2	
	b) The free electron theory of metals	1	Lecture
I	c) expressions for electrical conductivity	2	Group Discussion Lecture With PPT
	d) expression for thermal conductivitye) Wiedman-Franz's law-Band	2	Lecture With Demo
	theory of solids f) Classification of solids on the	2	Seminar
	basis of band theory.		
Unit	Positive Rays	Hours (11)	Mode
	a) Discovery-properties- analysis	2	
	b) Thomson's parabola method – Aston's mass spectrograph	2	Lecture Group Discussion
II	 c) Bainbridge's mass spectrograph – Dempster's mass spectrograph d) Mass defect and packing fraction 	2	Lecture With PPT
	e) polarization of X-rays (Thomson's Formula)	2	Seminar
	f) Determination of number of electrons per atom	1	-
		1	
Unit	Atomic Structure	Hours (11)	Mode
III	a) Introduction - Rutherford Nuclear Atom Model	2	
	b) Bohr Atom Model	1	
	c) Sommerfeld's Relativistic Atom Model	2	Lecture With Group Discussion

d) The Vector Atom Mod	el 2	
e) Quantum Numbers ass with the vector Atom Mo		Lecture With PPT
f) Coupling Schemes – T Exclusion Principle	he Pauli's 2	Seminar

Unit	Atoms in external field	Hours (11)	Mode
	a) X rays – Production of X-Rays	1	
	b) X-Rays Spectra – Main features of Continuous X-Ray Spectrum	2	Lecture
	c) Characteristics X-Ray Spectrum	2	Seminar
IV	d) Moseley's Law and its importance	1	Lecture With PPT
	e) Compton's Scattering – Experimental Verification	2	-
	f) Zeeman Effect	1	
	g) Lorentz Classical theory of normal Zeeman Effect – Stark Effect	2	
Unit	The Photo Electric Effect	Hours (11)	Mode
	a) Introduction – Nature of photo particles	2	
	b) Lenard's method to determine e/m for photoelectrons	2	Lecture
V	c) Experimental investigations on the photoelectric effect	2	Group Discussion
	d) Laws of Photoelectric emission – Failure of the electromagnetic theory	2	Lecture With PPT
	e) Einstein's photoelectric equationf) Photoelectric cells.	2 1	Seminar

Course Designed by

- 1. Dr. K.Ramavenkateswari
- 2. Dr.k.Jayabala

Programme	B.Sc	Programme Code		UPH	
Course Code	20UPHE51	Number of Hours	Number of Hours/Cycle		
Semester	V	Max. Marks		100	
Part	III	Credit		4	
	CORE ELEC	TIVE COURSE-I			
Course Title	Classical Physi	ics	L	Т	Р
Cognitive Level	Upto K3	Upto K3		-	-

L-Lecture T-Tutorial P-PracticalPreamble

To make the students to understand the basic concepts of classical physics such as Mechanics of a system of particles, coordinate systems, dynamics of Lagrangian concepts ,dynamics of Hamiltonian and variational principle.

Unit I	Mechanics of particles	12 Hours
	Introduction - Mechanics of particle - Conservation of linear	
	momentum - Conservation of angular momentum - Conservation	
	of energy - Mechanics of system of particles - Conservation of	
	linear momentum - conservation of angular momentum -	
	conservation of energy - Work energy theorem	
Unit II	Conservative forces	12 Hours
	Conservative forces - Examples - Constraints - Types of	
	Constraints - Degrees of freedom - generalized velocities -	
	Configuration space - Coordinate systems - Symmetry properties	
	of space and time and conservation laws.	
Unit III	Lagrangian Dynamics	12 Hours
	Introduction - Principle of virtual work - D'Alembert's principle -	
	Lagrange's equations of motion from D'Alembert's principle	
	(Derivation) - simple applications (simple pendulum, compound	
	pendulum, Atwood's machine) - Superiority of Lagrangian	
	approach to Newton's approach.	
Unit IV	Hamiltonian Dynamics	12 Hours
	Hamilton's principle and Lagrange's equations of motion from	
	Hamilton's principle - Deduction of Hamilton's principle from	
	D'Alembert's principle-Simple applications (simple pendulum,	
	compound pendulum, Atwood's machine , One Dimension	
	Harmonic oscillator)	
Unit V	Variational Principle	12 Hours
	Introduction - Cyclic co-ordinates - Hamiltonian function H -	
	Physical significance - Hamilton's equation of motion	
	(derivation) - Variational principle - Hamilton's equation of	
	motion from variational principle - Simple applications	
	(Harmonic oscillator , Compound pendulum , Motion of a	
	particle in central force field).	

Pedagogy

These concepts are better understood when lectures are accompanied with chalk and talk method, demonstration, Power Point Presentation and Learning aids.

Text Book

1. Murugesan .R, (2004), "Theoretical Physics", Shantha Publications.

Reference Books

1. Goldstein,(1998),"Classical Mechanics", Narosa Publishing House, New Delhi.

2. Upadhya.J.C., (1999), "*Classical Mechanics*", Himalaya Publishing House, Delhi, Bangalore, Hyderabad.

E-Resources

- https://sites.astro.caltech.edu/~golwala/ph106ab/ph106ab_notes.pdf
- https://www.tutorialsduniya.com/notes/classical-dynamics-notes/

Course Outcomes

At the end of the course, students would be able to

Unit I	CO1	Relate Mechanics of a particles and system of particles.
Unit II	CO2	Illustrate the concepts of Coordinate systems.
Unit III	CO3	Interpret the dynamics of Lagrangian.
Unit IV	CO4	Manipulate the dynamics of Hamiltonian.
Unit V	CO5	Apply the concepts of variational principle into Hamilton's equations of motion.

Mapping of Programme Specific Outcomes [PSOs] with Course Outcomes [COs]

PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
3	2	2	2	2	1	1	1	1	1	1	1
3	2	2	2	2	1	2	1	1	1	1	1
3	3	2	2	2	2	1	1	1	1	1	1
2	2	3	3	2	2	1	2	1	1	1	1
2	2	3	3	1	1	2	1	1	1	1	1
	PSO1 3 3 3 2 2 2	PSO1 PSO2 3 2 3 2 3 3 2 2 2 2 2 2	PSO1 PSO2 PSO3 3 2 2 3 2 2 3 3 2 2 3 2 2 2 3 2 2 3 2 2 3 2 2 3	PSO1PSO2PSO3PSO432223222332222332233	PSO1PSO2PSO3PSO4PSO53222232222332222233222331	PSO1PSO2PSO3PSO4PSO5PSO6322213222133222223322223311	PSO1PSO2PSO3PSO4PSO5PSO6PSO73222211322221233222212223322112233112	PSO1PSO2PSO3PSO4PSO5PSO6PSO7PSO83222111322212133222112233221122331121	PSO1PSO2PSO3PSO4PSO5PSO6PSO7PSO8PSO93222111132221211332221112233221122331121	PSO1PSO2PSO3PSO4PSO5PSO6PSO7PSO8PSO9PSO10322211111322212111332221111223322111223311211	PSO1PSO2PSO3PSO4PSO5PSO6PSO7PSO8PSO9PSO10PSO1132221111113222121111332221111122332211112233112111

1-Low 2- Moderate 3- High

BLUE PRINT – End Semester Examinations

Articulation Mapping - K Levels with Course Outcomes (COs)

			Secti	on A	Section B	Section C
Units	COs	Os K-Level MCQs		ŻQs	Either/ or Choice	Open Choice
			No. Of Questions	K-Level	No. of Question	No.of Question
1	CO1	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
2	CO2	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
3	CO3	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
4	CO4	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
5	CO5	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
No of 0	Questions	to be asked	10		10	5
No of Questions to be		10		5	3	
Marks for each Question		1		4	10	
Total 1	marks for	each	10		20	30

K1 - Remembering and recalling facts with specific answers

K2 – Basic understanding of facts and stating main ideas with general answers

K3 - Application oriented - Solving problems

Distribution of Section –wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without Choice
K1	10	-	-	10	10
K2	-	40	-	40	40
K3	-	-	50	50	50
Total Marks	10	40	50	100	100

	Lesson Plan									
Unit	Mechanics of particles	Hours (12)	Mode							
	a)Introduction - Mechanics of particles	2								
I	b) conservation of linear momentum - conservation of angular momentum - conservation of energy	4	Lasteres							
	c)Mechanics of system of particles - conservation of linear momentum - conservation of angular momentum	4	Lecture Lecture With PPT							
	d) conservation of energy - Work energy theorem	2								
Unit	Conservative forces	Hours (12)	Mode							
	a)Conservative forces - Examples	3								
	b) constraints – Types of Constraints	3								
п	c) Degrees of freedom - generalized velocities, Configuration space – Coordinate systems	3	Lecture							
	d) Symmetry properties of space and time and conservation laws.	3	Lecture With PPT							
Unit	Lagrangian Dynamics	Hours (12)	Mode							
	a)Introduction - Principle of virtual work	4								
	b) D'Alemberts principle - Lagrange's equations of motion from D'Alemberts principle (Derivation)	4	T ,							
III	c) Simple applications (simple pendulum, compound pendulum, Atwood's machine) - Superiority of Lagrangian approach to Newton's approach.	4	Lecture Lecture With PPT							
Unit	Hamiltonian Dynamics	Hours (12)	Mode							
	a)Hamilton's principle and Lagrange's equations of motion from Hamilton's principle.	4								
IV	b) Deduction of Hamilton's principle from D'Alemberts principle.	4	Lecture With PPT							
	c) Simple applications (simple pendulum, compound pendulum, Atwood's machine, One Dimension Harmonic oscillator).	4	Lecture							

Lesson Plan

Unit	Variational Principle	Hours (12)	Mode
	a)Introduction - Cyclic co-ordinates - Hamiltonian functions H - Physical significance.	4	
v	b) Hamilton's equation of motion (derivation) - Variational principle - Hamilton's equation of motion from variational principle.	4	Lecture With PPT
	c) Simple applications (Harmonic oscillator, Compound pendulum, motion of a particle in central force field).	4	Lecture

Course Designed by

Dr. T.Rajesh Kumar
 Dr. P.Uma Mageshwari

Programme	B.Sc	B.Sc Programme Code						
Course Code	20UPHE52	Number of Hours/C	Cycle	4				
Semester	V	Max. Marks		100				
Part	III	III Credit						
	CORE ELEC	TIVE COURSE – I						
Course Title	Statistical Phys	sics	L	Т	Р			
Cognitive Level	Upto K3	Upto K3 60						
L – Lecture T – Tutorial P – Practical								

Preamble

This Course provides the students to acquire the required knowledge to apply the principles of statistical mechanics to selected problems.

Unit I	Microscopic And Macroscopic System	12 Hours
	Microscopic and macroscopic system - Ensembles -	
	Degenerate and non degenerate Ensembles - Phase space -	
	Micro and Macro States - Basic Postulates of statistical	
	mechanics.	
Unit II	Thermodynamic Probability	12 Hours
	Definition of mathematical probability - Thermodynamic	
	probability - Boltzmann theorem of entropy and probability	
	- Boltzmann Relation connecting Entropy and Probability -	
	Statistical equilibrium.	
Unit III	Classical Statistics	12 Hours
	Maxwell Boltzmann statistics - Maxwell Boltzmann energy	
	distribution law - Maxwell Boltzmann in terms of	
	Temperature - Application of Maxwell Boltzmann	
	Distribution law to an Ideal gas - Maxwell Boltzmann	
	velocity distribution law.	
Unit IV	Quantum Statistics - I	12 Hours
	Introduction - Quantum statistics of identical particles -	
	Types of Quantum particles - Bose-Einstein statistics -	
	Bose-Einstein distribution law - Planck's law of black body	
	radiation (Derivation) - Deduction of Wien's and Rayleigh	
	Jeans law of black body radiation.	
Unit V	Quantum Statistics - II	12 Hours
	Fermi Dirac Statistics - Derivation of Fermi Dirac	
	distribution law - Application of Fermi Dirac Statistics -	
	Electron gas - Expression for Fermi Energy - Comparison	
	between the three statistics.	

Pedagogy

These concepts are better understood when lectures are accompanied with chalk and talk method, demonstration, Power Point Presentation and Learning aids.

Text Book

1. Murugesan .R, (2004), "Theoretical Physics", Shantha Publications.

Reference Books

1. Agarwal ,(1996), "Statistical Physics and Thermodynamics", Sultan Chand and Company, New Delhi .

2.Sears.F.W., and Salinger.G.L.,(1986), "Kinetic theory and statistical thermodynamics", Narosa Publishing House, New Delhi.

E-Resources

- https://courses.physics.ucsd.edu/2010/Spring/physics210a/LECTURES/210_COU RSE.pdf
- http://www.tapir.caltech.edu/~sperhake/Lectures/Notes/StatPhys/notes.pdf

Course Outcomes

At the end of the course, students would be able to

Unit I	CO1	Organize the concepts Microscopic and Macroscopic System.
Unit II	CO2	Show Boltzmann theorem of entropy and probability.
Unit III	CO3	Apply Maxwell Boltzmann Distribution law to an Ideal gas
Unit IV	CO4	Use Bose-Einstein statistics to derive Planck's radiation formula.
Unit V	CO5	Relate statistical and Quantum Statistics.

Mapping of Programme Specific Outcomes [PSOs] with Course Outcomes [COs]

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	3	2	2	2	2	1	1	1	1	1	1	1
CO2	3	2	2	2	2	1	2	1	1	1	1	1
CO3	3	3	2	2	2	2	1	1	1	1	1	1
CO4	2	2	3	3	2	2	1	2	1	1	1	1
CO5	2	2	3	3	1	1	2	1	1	1	1	1

1-Low 2- Moderate 3- High

BLUE PRINT – End Semester Examinations

Articulation Mapping - K Levels with Course Outcomes (COs)

			Secti	on A	Section B	Section C
Units	COs	K-Level	MCQs		Either/ or Choice	Open Choice
			No. Of Questions	K-Level	No. of Question	No.of Question
1	CO1	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
2	CO2	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
3	CO3	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
4	CO4	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
5	CO5	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
No of C	Questions	s to be asked	10		10	5
No of Questions to be		10		5	3	
Marks	Marks for each Question		1		4	10
Total 1	Total marks for each		10		20	30

K1 – Remembering and recalling facts with specific answers

K2 – Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

Distribution of Section -wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without Choice
K1	10	-	-	10	10
K2	-	40	-	40	40
К3	-	-	50	50	50
Total Marks	10	40	50	100	100

	Lesson Plan		
Unit	Microscopic And Macroscopic System	Hours (12)	Mode
	a)Microscopic and macroscopic system.	3	
Ι	b) Ensembles – Degenerate and non degenerate Ensembles.	3	
	c) Phase space – Micro and Macro States.	3	
	d) Basic Postulates of statistical mechanics.	3	Lecture
Unit	Thermodynamic Probability	Hours (12)	Mode
	a) Definition of mathematical probability - thermodynamic probability	3	
	b) Boltzmann theorem of entropy and probability	3	Lecture
II	c) Boltzmann Relation connecting Entropy and Probability	3	Lecture
	d) Statistical equilibrium	3	With PPT
Unit	Classical Statistics	Hours (12)	Mode
	a) Maxwell Boltzmann statistics - Maxwell Boltzmann energy distribution law	4	Lecture
III	b) Maxwell Boltzmann in terms of Temperature – Application of Maxwell Boltzmann Distribution law to an Ideal gas	5	Lecture With Demo
	c) Maxwell Boltzmann velocity distribution law	3	
Unit	Quantum Statistics - I	Hours(12)	Mode
	a) Introduction – Quantum statistics of identical particles	4	Lecture With PPT
IV	b) Types of Quantum Particles - Bose-Einstein statistics - Bose-Einstein distribution law	4	Lecture
	c) Planck's law of black body radiation(Derivation) - Deduction of Wien's and RayleighJeans law of black body radiation.	4	
Unit	Quantum Statistics - II	Hours (12)	Mode
	a) Fermi Dirac Statistics – Derivation of Fermi		
	Dirac distribution law	4	Lecture With PPT
V	b) Application of Fermi Dirac Statistics – Electron gas	4	Lecture
	c) Expression for Fermi Energy - Comparison between the three statistics.	4	Locture

Course Designed by

1. Dr. S.Saravanan

2. Dr. R.Jayaraman

Programme	B.Sc	Programme Code			UPH			
Course Code	20UPHE53	Number of Hours	Number of Hours/Cycle		4			
Semester	V	Max. Marks		100				
Part	III	Credit		4				
	CORE ELECTIVE COURSE – I							
Course Title Physics of Electronic Appliances			L	Т	Р			
Cognitive Level	Upto K3			-	-			

L-Lecture T-Tutorial P-Practical

Preamble

To make the students to understand the basic concepts of Physics of Electronic appliances such as Passive Devices, Diodes and Transistors, Semiconductor Devices, Voltage Regulator and Basic concepts of Transmitter and Receiver.

Unit I	Passive Devices	12 Hours
	Passive devices - Resistors - Types - Characteristics -	
	Colour coding - Capacitors - Types - Characteristics -	
	Colour coding - Star and delta connection of resistors and	
	capacitors.	
Unit II	Diodes and Transistors	12 Hours
	Chokes - Transformers - Testing of diodes, transistors and	
	ICs - CRO - Waveforms and Lissajoue's figures - AF and	
	RF oscillators - usage of bread board.	
Unit III	Semiconductor Devices	12 Hours
	Semiconductor diode - Zener diode - Transistor - Transistor	
	configurations - diode rectifier - half wave and full wave -	
	Bridge rectifier -Diode voltage doublers and multiplier.	
Unit IV	Voltage Regulator	12 Hours
	Regulated power supply, Zener diode voltage regulator	
	(Series and Shunt type) IC Voltage regultors: fixed positive	
	- fixed negative - adjustable.	
Unit V	Basic concepts of Transmitter and Receiver	12 Hours
	Basic concepts of radio transmitter and receiver - Basic	
	concepts of TV Transmitter and receiver - TV antennas:	
	Resonance antennas and their characteristics - DTH system	
	- Mobile communication system - MODEM.	

Pedagogy

These concepts are better understood when lectures are accompanied with chalk and talk method, demonstration, Power Point Presentation and Learning aids.

Text Book

1. Materials Prepared by Department of Physics.

Reference Books

1. Metha.V.K,(2001), "Principles of Electronics", Sulthan Chand and Company.

2. Halliday.D, Resnick.R and Walker,(1960), *Fundamentals of Physics*, 6th Edition, John Wiley and Sons, Inc.

E-Resources

- http://engineering.nyu.edu/gk12/amps-cbri/pdf/Basic%20Electronics.pdf
- https://ncert.nic.in/textbook/pdf/gesc114.pdf

Course Outcomes

At the end of the course, students would be able to

Unit I	CO1	Manipulate the various types of resistors and its colour coding.
Unit II	CO2	Make use of diodes and transistors for various appliances.
Unit III	CO3	Construct the various semiconductor devices.
Unit IV	CO4	Experiment to determine the characteristics of zener diode.
Unit V	CO5	Build TV antennas, DTH and MODEM using the concepts of
		Transmitter and Receiver.

Mapping of Programme Specific Outcomes [PSOs] with Course Outcomes [COs]

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	3	2	2	2	2	1	1	1	1	1	1	1
CO2	3	2	2	2	2	1	2	1	1	1	1	1
CO3	3	3	2	2	2	2	1	1	1	1	1	1
CO4	2	2	3	3	2	2	1	2	1	1	1	1
CO5	2	2	3	3	1	1	2	1	1	1	1	1

1-Low 2- Moderate 3- High

BLUE PRINT – End Semester Examinations

Articulation Mapping - K Levels with Course Outcomes (COs)

			Secti	on A	Section B	Section C
Units COs		K-Level	MCQs Either/ or Choice		Open Choice	
			Questions		No. of Question	No.of Question
1	CO1	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
2	CO2	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
3	CO3	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
4	CO4	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
5	CO5	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
No of C	Questions	to be asked	10		10	5
No of Questions to be		10		5	3	
Marks for each Question		1		4	10	
Total 1	marks for	each	10		20	30

K1 – Remembering and recalling facts with specific answers

K2 - Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

Distribution of Section –wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without Choice
K1	10	-	-	10	10
K2	-	40	-	40	40
K3	-	-	50	50	50
Total Marks	10	40	50	100	100

	Lesson Plan		
Unit	Passive Devices	Hours (12)	Mode
	a) Passive devices – Resistors – types	3	
	b) characteristics – colour coding	3	
Ι	c) capacitors – type – characteristics	3	
	d) colour coding star and delta connection of a	3	Lecture
	resistors and capacitors		
Unit	Diodes and Transistors	Hours (12)	Mode
	a) Chokes – Transformers	3	
	b) testing of diodes, transistors and ICs	3	Lecture
II	c) CRO – Waveforms and Lissajoue's figures	3	
	d) A/F and R/F oscillators – usage of bread	3	Lecture
	board		With PPT
Unit	Semiconductor Devices	Hours (12)	Mode
	a) Semiconductor diode – Zener diode	4	
	b) Transistor – Transistor configurations –	4	Lecture
III	diode rectifier – half wave and full wave		Lecture
	c) Bridge retifier – Diode voltage doublers		With
	and multiplier	4	Demo
Unit	Voltage Regulator	Hours (12)	Mode
	a) Regulated power supply, Zener diode		
IV	voltage regulator (Series and Shunt type)	4	Lecture
1 V	b) IC Voltage regultors: fixed positive	4	With PPT
	c) fixed negative – adjustable.	4	Lecture
Unit	Basic concepts of Transmitter and Receiver	Hours (12)	Mode
	a) Basic concepts of radio transmitter and	4	
	receiver		_
V	b) Basic concepts of TV Transmitter and	4	Lecture
	receiver – TV antennas: Resonance antennas	-	With PPT
	and their characteristics		Lastar
	c) DTH system – Mobile communication	4	Lecture
	system - MODEM.		
	1		I

Course Designed by 1. Dr.K.Ramavenkateswari

2. Dr.K.Jayabala

Programme	B.Sc	B.Sc Programme Code UP			
Course Code	20UPHC5P	20UPHC5P Number of Hours/Cycle			
Semester	V	Max. Marks	50		
Part	III	Credit	2		
	Major Phys	ics Project	·		
Course Title	Course Title Major Physics Project				
Cognitive Level					

Course Outcomes

Upon successful completion of this project work the student:

CO1	can develop a Scientific approach in solving problems related to Physics
CO2	Can understand the importance of theoretical and experimental analysis
CO3	Able to write a dissertation
CO4	Can familiarize about various applications of Physics

Project work:

- Each faculty will be allotted a group of (2-3) students for their research project in any one of the areas of Physics in consultation with their guide and the Head of the Department.
- The topic / area of work will be finalized at the end of IV semester, allowing scope for the students to gather relevant literature during the vacation.
- The project report should be submitted to the Head of the Department of Physics through the Guide one week prior to the commencement of the summative examination.
- They shall submit Three copies of their project report for valuation.
- The choice of the topic for the project can be from a wide range of subjects, but a text or topic prescribed for study should be strictly avoided.

Area of work:

Area of work related to Physics

Methodology

Each project should contain the following details:

Introduction - Literature Survey -Theory / Experimental details - Results and Discussion Conclusion - Bibliography

- The project should be at least 25 pages excluding bibliography and appendices.
- There shall be single **internal valuation only**.
- The maximum marks for the project work shall be 100.

Internal Assessment: 100 Marks

Mode of Evaluation	Marks
Project Report	60
Viva Voce	40

• Further for a pass in this course as a whole, a group should secure at least 40 marks in project report and viva-voce put together.

Programme	B.Sc	B.Sc Programme Code		UPH	UPH		
Course Code	20UPHS51	Number of Hours/C	Number of Hours/Cycle		2		
Semester	V	Max. Marks		50			
Part	IV	Credit		2			
	SKILL BAS	SED COURSE – I					
Course Title	Nano Physics		L	Т	Р		
Cognitive Level	Upto K3	Upto K3 24			3		
L – Lecture T – Tutorial P – Practical							

Preamble

To create the basic knowledge in nano materials. Scientific perspective of nanomaterials, techniques suitable for nanomaterial synthesis, and the significance of nanomaterials.

Unit I	Nano Science	5 Hours			
	Introduction - Nanomaterials categories - Chemical				
	reduction - Catalysis on nanoparticles - Reduction of oxide				
	- Reaction of rare earth elements				
Unit II	Synthesis	4 Hours			
	Introduction - Top down vs bottom up method - Lithographic process and its challenges - Sol-gel technique-				
	Eletectrodeposition				
Unit III	Instrumentation and Characterization- I	5 Hours			
	Introduction - Basic principles of electron microscopy -				
	Scanning electron microscope (SEM) - Transmission				
	electron microscope (TEM) - Atomic Force Microscope				
	(AFM)				
Unit IV	Instrumentation and Characterization - II	5 Hours			
	Introduction - structure of nanomaterials - X-ray diffraction				
	(XRD) - the Laue method - Powder method - Analysis of				
	some commercially important oxides				
Unit V	Application of Nanotechnology	5 Hours			
	Applications of nanomaterials - Sensitivity sensors - Water				
	purification - food - Fabric industry - Environment -				
	Molecular machine - nanobiometrics				

Pedagogy

These concepts are better understood when lectures are accompanied with chalk and talk method, demonstration, Power Point Presentation and Learning aids.

Text Book

1.Rajesh Kumar T., Sangeetha R. and Langeswaran V.K (2022), "Nano Physics", New Century Book House Private Limited.

Reference Books

- 1. Chattopadhyay K.K, Banerjee A.N (2012), "Introduction to Nanoscience and Nanotechnology", PHI Learning Private Limited.
- 2. Shah M.A., Tokeer Ahmad, (2013), "Principles of Nanoscience and nanotechnology", Naroa publishing house Private Limited.

E-Resources

- http://indico.ictp.it/event/a10137/session/2/contribution/1/material/0/0.pdf
- http://www.phys.nthu.edu.tw/~spin/course/102S/102-2-21_nanophysicsintroduction-Kwo- English.pdf

Course Outcomes

At the end of the course, students would be able to

Unit I	CO1	Identify the various conduction mechanisms in bulk and low
		dimensional systems.
Unit II	CO2	Make use of Top down and bottom up techniques.
Unit III	CO3	Develop the Instrumental concepts of SEM, TEM and AFM.
Unit IV	CO4	Develop the Instrumental concepts of XRD.
Unit V	CO5	Apply the concepts of Nanotechnology in fabric, food, sensors and
		Molecular machine.

BLUE PRINT – End Semester Examinations

Articulation Mapping - K Levels with Course Outcomes (COs)

			Section	Section B	
Units	COs	K-Level	Either/ or	Open Choice	
Cints	COS	IX-Level	No. Of Questions	K-Level	No. of
					Question
1	CO1	Up to K3	2	2 (K2 & K2)	1 (K3)
2	CO2	Up to K3	2	2 (K2 & K2)	1 (K3)
3	CO3	Up to K3	2	2 (K2 & K2)	1 (K3)
4	CO4	Up to K3	2	2 (K2 & K2)	1 (K3)
5	CO5	Up to K3	2	2 (K2 & K2)	1 (K3)
No of Questions to be asked		10		5	
No of Questions to be answered		5		3	
Marks for each Question		3		5	
Total marks for each	h Section	ı	15		15

K1 – Remembering and recalling facts with specific answers

K2 – Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

Distribution of Section –wise Marks with K Levels

K Levels	K Levels Section A (Either/or)		Total Marks	% of Marks without Choice	
K1	10	-	30	54.5	
K2		5	25	45.5	
Total Marks	30	25	55	100	

	Lesson Plan		
Unit	Nanoscience	Hours (5)	Mode
	a) Introduction – energy bands	1	
Ŧ	b) density of states at low-dimensional structures	1	
Ι	c) various conduction mechanisms in 3D (bulk)	2	
	d) 2D (thin film)and low dimensional	1	Lecture
	systems	1	
Unit	Synthesis	Hours (4)	Mode
	a) Introduction	1	
	b) top-down vs. bottom up technique	1	
Π	c) lithographic process and its limitations	1	Lecture
	d) sol-gel technique- eletectrodeposition	1	Lecture With PPT
Unit	Instrumentation and Characterization - I	Hours (5)	Mode
	a) Introduction-basic principles of	2	
	electron microscopy		
			Lecture
III	b) scanning electron microscope (SEM)	2	
	- Transmission electron microscope (TEM)		Lecture With Demo
	c) Atomic Force Microscope (AFM)	1	
Unit	Instrumentation and Characterization - II	Hours (5)	Mode
	a) Introduction – structure of nanomaterials	1	
IV	b) X-ray diffraction-(XRD) - the laue method- powder method	2	Lecture With PPT
1,	c) analysis of some commercially	2	
	important oxides	2	Lecture
Unit	Application of Nanotechnology	Hours (5)	Mode
	a) Applications of nanomaterials -	2	
	sensitivity sensors		
\mathbf{V}	b) water purification- food – fabric industry	1	Lecture With PPT
	c) environment– molecular machine – nanobiometrics	2	Lecture

Course Designed by 1. Dr. T. Rajesh Kumar

2. Dr. P. Uma Mageshwari

Programme	B.Sc	B.Sc Programme Code		UPH			
Course Code	20UPHS52	Number of Hours/Cycle	Hours/Cycle 2				
Semester	V Max. Marks		50				
Part	IV Credit		2				
SK	SKILL BASED COURSE – II						
Course Title	Basic Electronics		L	Т	P		
Cognitive Level	Upto K3		24	3	3		

L – *Lecture T* – *Tutorial P* – *Practical* **Preamble**

To provide concepts of Basic electronics, Semiconductor devices, Transistors, Amplifiers, Oscillators, Number systems and Digital Communication systems.

Unit I	Introduction of Electronics	5 Hours
	Introduction - Electronics - Atomic Structure - Structure of	
	elements - The electron - Energy of an electron - Valence	
	electrons - Free electrons - Diffusion and drift current - Voltage	
	source - Constant voltage source - Constant current source -	
	Thevenin's theorem – Nortan's theorem – Chassis and Ground.	
Unit II	Semiconductor Diodes	5 Hours
	Formation of pn junction diode – Forward and Reverse biasing of	
	a junction diode - VI characteristics of a junction diode -Zener	
	diode - Experiment to study the characteristics of the zener diode -	
	Light Emitting Diode (LED) Uses - Bridge Rectifier -Filter	
	Circuits.	
Unit III	Transistors	5 Hours
	Transistor symbols - Transistor as an amplifier - Transistor	
	connections - Common base connection - Characteristics of	
	Common Base connection - Common Emitter connection -	
	Characteristics of Common Emitter connection.	
Unit IV	Amplifiers	4 Hours
	Introduction - Single stage transistor amplifier - DC and AC	
	equivalent circuits - Voltage gain - Classification of amplifiers -	
	Amplifier equivalent circuit - Equivalent circuit with signal	
	source.	
Unit V	Oscillators	5 Hours
	Introduction - Sinusoidal oscillator - Types of sinusoidal	
	oscillations - Positive feedback amplifier - Oscillator - Essentials	
	of transistor oscillators - Different types of transistor oscillators -	
	Tuned collector oscillator - Colpitt's oscillator - Hartley	
	oscillator.	

Pedagogy

These concepts are better understood when lectures are accompanied with chalk and talk method, demonstration, Power Point Presentation and Learning aids. **Text Books:**

1. Mehta.V.K, (2004), "Principles of Electronics", S. Chand & Company Lmited.

UNIT – I: Page No: 1 - 24

- UNIT III: Page No: 177 195
- UNIT IV: Page No: 246 260, 267 269
- UNIT V: Page No: 346 360
- 2. Murugesan.R, (2014), "Electricity and Electronics", shantha Publications Private Limited.

UNIT – II: Page No: 99 - 108

Reference Books:

- 1. Donald P Leach, Albert Paul Malvino, Goutam Saha, (2006), "Digital Principles and Electronics", Tata McGraw Hill Publishing Company Limited.
- 2. Jacob Millman, Christos Halkias, Chetan D Parikh, (2011). "Millman's Integrated Electronics", Tata McGraw Hill Education Private Limited

E-Resources

- http://engineering.nyu.edu/gk12/amps-cbri/pdf/Basic%20Electronics.pdf
- https://igitsarang.ac.in/assets/documents/coursematerial/basic_electronics_note-2nd_sesmester_btech_compressed_1589976528.pdf
- http://cbseacademic.nic.in/web_material/Curriculum/Vocational/2018/Basic_Elect ronics_XI.pdf

Course Outcomes

At the end of the course, students would be able to

Unit I	CO1	Organize the concepts of Electronics
Unit II	CO2	Build the Ideas of Semiconductor diodes
Unit III	CO3	Show and Demonstrate the Common Emitter Transistor
Unit IV	CO4	Illustrate the concept of Amplifiers
Unit V	CO5	Illustrate the different types of oscillators

Articulation Mapping - K Levels with Course Outcomes (COs)

			Section	Section B	
Units	COs	K-Level	Either/ or	Open Choice	
Units	COS	K-Level	No. Of Questions	K-Level	No. of
					Question
1	CO1	Up to K3	2	2 (K2 & K2)	1 (K3)
2	CO2	Up to K3	2	2 (K2 & K2)	1 (K3)
3	CO3	Up to K3	2	2 (K2 & K2)	1 (K3)
4	CO4	Up to K3	2	2 (K2 & K2)	1 (K3)
5	CO5	Up to K3	2	2 (K2 & K2)	1 (K3)
No of Qu	No of Questions to be asked		10		5
No of Questions to be answered		5		3	
Marks for each Question		3		5	
Total ma	rks for ea	ch Section	15		15

K1 - Remembering and recalling facts with specific answers

K2 - Basic understanding of facts and stating main ideas with general answers

K3 - Application oriented - Solving problems

Distribution of Section –wise Marks with K Levels

K Levels	Section A (Either/or)	Section B (Open Choice)	Total Marks	% of Marks without Choice
K1	10	-	30	54.5
K2		5	25	45.5
Total Marks	30	25	55	100

	Lesson Plan		-
Unit	Introduction of Electronics	Hours (5)	Mode
	a) Introduction – Electronics	1	Lecture
			Group
	b) Atomic Structure - Structure of		Discussion
	elements – The electron – Energy of an	1	Lecture With
	electron		PPT
Ι	c) Valence electrons – Free electrons –		
	Voltage source – Constant voltage	1	Lecture With
	source		Demo
	d) Constant current source	1	
	e) Thevenin's theorem - Nortan's	1	Seminar
	theorem – Chassis and Ground		
Unit	Semiconductor Diodes	Hours (5)	Mode
	a) Formation of p-n junction diode	1	Lecture
			Group
	b) Forward and Reverse biasing of a	1	Discussion
	junction diode		Lecture With
II	c) V-I characteristics of a junction	1	PPT
	diode	1	
	d) Zener diode – Experiment to study the characteristics of the zener diode	1	Lecture With Demo
		1	Demo
	e) Light Emitting Diode (LED) – Uses - Bridge Rectifier – Filters Circuits	1	Seminar
Unit	Transistors	Hours (5)	Mode
Umt	a) Transistor symbols	Hours (5)	Mode
	a) Transistor symbols	1	Lecture With
	b) Transistor as an amplifier –		Group
	Transistor connections – Common base	2	Discussion
III	connection – Characteristics of		Discussion
	Common Base connection		Lecture With
	c) Common Emitter connection –		PPT
	Characteristics of Common Emitter	2	Lecture
	connection		Seminar
Unit	Amplifiers	Hours (4)	Mode
	a)Introduction – Single stage transistor	1	Lecture
	amplifier		
	b) DC and AC equivalent circuits	1	Seminar
IV			
	c) Voltage gain – Classification of	1	Lecture With
	amplifiers		PPT
	d) Amplifier equivalent circuit -		
	Equivalent circuit with signal source.	1	
Unit	Oscillators	Hours (5)	Mode
	a) Introduction – Sinusoidal oscillator –	1	
	Types of sinusoidal oscillations		Lecture
		1	Group
	b) Docitive feedback emplifier		
	b) Positive feedback amplifier –	1	<u>^</u>
V	Oscillator	1	Discussion
V	Oscillator c) Essentials of transistor oscillators –		Discussion Lecture With
V	Oscillator c) Essentials of transistor oscillators – Different types of transistor oscillators	1	Discussion
V	Oscillator c) Essentials of transistor oscillators – Different types of transistor oscillators d) Tuned collector oscillator –	1	Discussion Lecture With
V	Oscillator c) Essentials of transistor oscillators – Different types of transistor oscillators		Discussion Lecture With PPT

Course Designed by

1. Dr. S.Saravanan

2. Dr. R.Jayaraman

Programme	B.Sc	B.Sc Programme Code UPH		[
Course Code	20UPHC61	Number of Hours/Cycle	4		
Semester	VI Max. Marks		100		
Part	III Credit		4		
	CORE COU	RSE IX			
Course Title	Solid State Physics		L	Т	Р
Cognitive Level	Upto K3		55	3	2

L-Lecture T-Tutorial P-Practical

Preamble

To provide basic concepts of Crystallography, Bonding in crystals, applications of Liquid crystals and to acquire knowledge on the basics of magnetic phenomena on materials and various types of magnetization and the properties of superconducting materials.

Unit I	Crystallography	11 Hours
	Introduction - Classification of solids - Lattice - Basis - Unit	
	Cell - Lattice parameters of unit cell - Crystal systems -	
	Bravais Lattices - Characteristics of a Unit cell.	
Unit II	Bonding in Crystals	11 Hours
	Ionic bond - Covalent bond - Metallic bond - Molecular	
	bond - Hydrogen bond - Born - Haber Cycle - Crystal	
	structures of NaCl and Diamond - Specific heat capacity of	
	solids - Debye's theory of specific heat capacity of a solid .	
Unit III	Liquid Crystals & Superconductivity	11 Hours
	Liquid crystals - Thermotropic liquid crystals - Lyotropic	
	Liquid crystals - Applications - Glass - Glass transition	
	temperature - Metallic glasses - Quasi Crystals.	
	Superconductivity - Meissner Effect - The BCS theory - AC	
	and DC Josephson effect - Flux Quantization - High T c	
	Superconductivity - Applications.	
Unit IV	Magnetic Properties of Materials	11 Hours
	Introduction - Langevin's theory of Diamagnetism -	
	Langevin's theory of paramagnetism - Ferromagnetism -	
	Weiss theory of Ferromagnetism - Nuclear Magnetic	
	Resonance - Quantum Theory of Paramagnetism.	
Unit V	Dielectric Properties of Solids	11 Hours
	Introduction - Polarization - Macroscopic Electric field -	
	Depolarization Field - Local Electric field at an atom -	
	Dielectric constant - Polarizability - Derivation of the	
	Clausius-Mossotti relation - Frequency dependence of	
	polarizability - Electronic polarizability - Classical theory of	
	Electronic Polarizability	

Pedagogy

These concepts are better understood when lectures are accompanied with Class Room Lectures, chalk and talk, Power point presentation and Group Discussion.

Text Books:

2. Dr.Mani.P, (2011), "A Text Book of Engineering Physics - I", Dhanam Publications.

UNIT – I: Page No: 5.1 - 5.25,

2. Murugesan.R, (2010), "Modern Physics", S.Chand & CompanyLimited.

UNIT – II:	Page No: 551 – 567.
UNIT – III:	Page No: 573 – 586.
UNIT – IV:	Page No: 617 - 630.
UNIT – V:	Page No: 666 - 675.

Reference Books:

- 1. Charles Kittel, (2012), "Introduction to Solid State Physics", Willey India Private Limited.
- 2. Nisha Gupta , (2011) , "Elements of Solid State Physic" , Anmol Publications Private Limited.
- 3. Saxena.B.S, Gupta.R.C & Saxena.P.N, (2009), "Fundamentals of Solid State Physics", Pragati Prakashan Educational Publisher

E-Resources

- https://pdfcoffee.com/kittel-charles-introduction-to-solid-state-physics-7th01pdf-pdf-free.html
- http://www.issp.ac.ru/ebooks/books/open/Introduction%20to%20Modern%20Soli d%20State%20Phys.pdf
- https://www.thphys.physics.ox.ac.uk/people/SteveSimon/condmat2012/LectureNotes2 012.pdf

Course Outcomes

At the end of the course, students would be able to

Unit I	CO1	Illustrate the concepts of Crystallography and its types.
Unit II	CO2	Manipulate the basics of crystal bonding.
Unit III	CO3	Apply the superconductivity phenomenon in liquid crystals.
Unit IV	CO4	Organize the magnetic properties of materials.
Unit V	CO5	Calculate the dielectric properties of Solids.

Mapping of Programme Specific Outcomes [PSOs] with Course Outcomes [COs]

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	3	2	2	2	2	1	1	1	1	1	1	1
CO2	3	2	2	2	2	1	2	1	1	1	1	1
CO3	3	3	2	2	2	2	1	1	1	1	1	1
CO4	2	2	3	3	2	2	1	2	1	1	1	1
CO5	2	2	3	3	1	1	2	1	1	1	1	1

1-Low 2- Moderate 3- High

BLUE PRINT – End Semester Examinations

			Secti	on A	Section B	Section C
Units	COs	K-Level	MCQs		Either/ or Choice	Open Choice
			No. Of Questions K-Level		No. of Question	No.of Question
1	CO1	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
2	CO2	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
3	CO3	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
4	CO4	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
5	CO5	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
No of Questions to be asked		10		10	5	
No of Questions to be		10		5	3	
Marks for each Question		1		4	10	
Total marks for each		10		20	30	

Articulation Mapping - K Levels with Course Outcomes (COs)

K1 – Remembering and recalling facts with specific answers

K2 – Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

Distribution of Section -wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without Choice
K1	10	-	-	10	10
K2	-	40	-	40	40
K3	-	-	50	50	50
Total Marks	10	40	50	100	100

Unit	Crystallography	Hours (11)	Mode
	a) Introduction	1	_
	b) Classification of Solids	2	Lecture
	c) Lattice– Basis	2	Group Discussion
Ι	d) Unit Cell – Lattice parameters of		Lecture With PPT
	unit cell	2	Lecture With Demo
	e) Crystal systems - Bravais Lattices	2	Lecture with Denio
	f) Characteristics of a Unit cell.	2	Seminar
Unit	Bonding in Crystals	Hours (11)	Mode
	a) Ionic bond – Covalent bond –	1	_
	Metallic bond		Lecture
	b) Molecular bond – Hydrogen bond	2	Group Discussion
	a) Down Habor Cycele	2	Group Discussion Lecture With PPT
	c) Born –Haber Cycle	2	
II	d) Crystal structures of NaCl and Diamond	2	Lecture With Demo
	e) Specific heat capacity of solids -	2	
	Debye's theory of specific heat		Seminar
	capacity of a solid		
	f) Debye's theory of specific heat	2	
	capacity of a solid	2	
Unit	Liquid Crystals & Superconductivity	Hours (11)	Mode
	a) Liquid crystals – Thermotropic	1	
	liquid crystals	1	
	inquite en journe		
	b) Lyotropic Liquid crystals –	2	Lecture With Group
	Applications		Discussion
III	c) Glass – Glass transition	2	Lecture With PPT
	temperature – Metallic glasses –		
	Quasi Crystals	2	Lecture
	d) Superconductivity - Meissner Effect, The BCS theory	2	
	e) Theory of AC Josephson effect	2	Seminar
	f) Flux Quantization – High T _c	2	
	Superconductivity – Applications		
Unit	Magnetic Properties of Materials	Hours (11)) Mode
	a) Introduction	1	Lecture
	b) Langevin's theory of Diamagnetism	2	Seminar
	c) Langevin's theory of	2	Lecture With
IV	paramagnetism	_	PPT
-	d) Ferromagnetism	2	
		2	
	e) weiss theory of Ferromagnetism	<u>_</u>	
	e) Weiss theory of Ferromagnetismf) Nuclear Magnetic Resonance	1	
	e) weiss theory of Ferromagnetismf) Nuclear Magnetic Resonanceg)Quantum Theory of paramagnetism.		

Unit	Dielectric Properties of Solids	Hours (11)	Mode
	a) Introduction – Polarization – Macroscopic Electric field	2	
	b) Depolarization Field – Local Electric field at an atom	2	Lecture
V	c) Dielectric constant – Polarizability	2	Group Discussion
v	d) Derivation of the Clausius-Mossotti relation	2	Lecture With
	e) Frequency dependence of polarizability	1	PPT
	f) Electronic polarizability - Classical theory of Electronic Polarizability	2	Seminar

Course Designed by

1.Dr. K.Ramavenkateswari 2.Dr.K.Jayabala

Programme B.Sc Programme Code		UPH			
Course Code	20UPHC62 Number of Hours/Cycle 4		4		
Semester	VI	Max. Marks	100		
Part	III	Credit	4		
	CORE COU	URSE X			
Course Title	Nuclear Phy	sics	L	Т	P
Cognitive Level	Upto K3		55	3	2
L – Lecture T – Tutorial P – Practical					

Preamble

To provide the students to understand the Properties of Nucleus, Particle Accelarators, Radioactivity, Nuclear Disintegration, Nuclear Reactor and their applications

Unit I	Properties of Nucleus	11 Hours
	Introduction - Classification of Nuclei - General properties	
	of Nucleus - Binding Energy - Nuclear stability - Theories	
	of Nuclear Composition - Nuclear Forces - Meson theory	
	of nuclear forces - Models of Nuclear structure - The liquid	
	drop model - The shell model - The collective model.	
Unit II	Particle Accelarators	11 Hours
	Introduction - Van de Graaff generator - The Linear Accelerator - The Cyclotron - The synchrocyclotron - The Betatron - The Synchrotrons - The protron Synchroton (Bevatron, Cosmotron) - Detectors - Wilson cloud chamber - Bubble chamber - Photographic emulsion technique .	
Unit III	Radioactivity	11 Hours
	Discovery of radio activity - Natural radio activity - Alpha, Beta and Gamma rays - Properties of Alpha, Beta and Gamma rays - Geiger-Nuttal Law - Geiger-Nuttal Experiment - Internal Conversion - Law of Radioactive disintegration - Half life period - Mean life.	
Unit IV	Nuclear Disintegration	11 Hours
	Nuclear transmutation by alpha particles , protons, deuterons , neutrons and electrons - Nuclear Fission - Energy released in Fission - Chain Reaction - Atom Bomb - Nuclear Fusion – Source of Stellar Energy - CN cycle, pp cycle - Thermonuclear reactions - Hydrogen Bomb - Controlled Thermonuclear Reactions.	
Unit V	Nuclear Reactor	11 Hours
	Nuclear Reactors - PWR - Boiling Water Reactor - Fast Breeder Reactor - Radiation Hazards - Applications of Radio Isotopes - Cosmic Rays - Discovery of Cosmic Rays - East West Effect - Van Allen Belts .	

Pedagogy

These concepts are better understood when lectures are accompanied with Class Room Lectures, chalk and talk, Power point presentation and Group Discussion.

Text Books:

1. Murugesan.R, Kiruthiga Sivaprasath, (2010), "Modern Physics", Sultan Chand and Company Limited.

UNIT – I:	Page No: 383 - 397
UNIT – II:	Page No: 420 – 433, 412 - 417
UNIT – III:	Page No: 434 – 440, 453, 456 – 459.

UNIT – IV:	Page No: 480 – 481, 495 – 500, 503 – 505.
UNIT – V:	Page No: 501 – 503, 509 – 511, 515 - 520

Reference Books:

- 1. Seghal Chopra and Seghal, Sultan, (1998), "Modern Physics", Sultan Chand & Company.
- 2. Thayal,D.C.,(1998), "Nuclear Physics", Himalaya Publishing House New Delhi.
- 3. Richtmayer, Kennard of Cooper,(1998),"Introduction to Modern *Physics*", Tata Mc.Graw Hill.
- 4. Subramanyan,N.&Brijlal,(2000)," *Atomic and Nuclear Physics*",Sultan Chand & Company.

E-Resources

- https://ocw.mit.edu/courses/nuclear-engineering/22-02-introduction-to-appliednuclear-physics-spring-2012/lecture-notes/MIT22_02S12_lec_ch1.pdf
- http://faculty.washington.edu/bulgac/560_2014/[Samuel_S._M._Wong]_Introduct ory_Nuclear_Physics.pdf
- http://www.sfu.ca/~mxchen/phys1021003/P102LN34.pdf

Course Outcomes

At the end of the course, students would be able to

Unit I	CO1	Identify the Properties of Nucleus using various nuclear models
Unit II	CO2	Manipulate Van de Graaff generator, The Linear Accelerator and
	02	Photographic Emulsion technique using particle accelerators.
Unit III	CO3	Show and Demonstrate the concept of Radioactivity
Unit IV	CO4	Illustrate the concept of Nuclear Disintegration
Unit V	CO5	Construct various types of nuclear reactors.

Mapping of Programme Specific Outcomes [PSOs] with Course Outcomes [COs]

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	3	2	2	2	2	1	1	1	1	1	1	1
CO2	3	2	2	2	2	1	2	1	1	1	1	1
CO3	3	3	2	2	2	2	1	1	1	1	1	1
CO4	2	2	3	3	2	2	1	2	1	1	1	1
CO5	2	2	3	3	1	1	2	1	1	1	1	1

1-Low 2- Moderate 3- High

BLUE PRINT – End Semester Examinations

			Secti	on A	Section B	Section C
Units	COs	K-Level	MCQs		Either/ or Choice	Open Choice
			No. Of Questions	K-Level	No. of Question	No.of Question
1	CO1	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
2	CO2	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
3	CO3	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
4	CO4	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
5	CO5	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
No of (Questions	s to be asked	10		10	5
No of (No of Questions to be		10		5	3
Marks for each Question		1		4	10	
Total 1	marks for	each	10		20	30

Articulation Mapping - K Levels with Course Outcomes (COs)

 $\overline{K1}$ – Remembering and recalling facts with specific answers

K2 – Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

Distribution of Section -wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without Choice
K1	10	-	-	10	10
K2	-	40	-	40	40
K3	-	-	50	50	50
Total Marks	10	40	50	100	100

Lesson Plan

Unit	Properties of Nucleus	Hours (11)	Mode
	a) Introduction - Classification of Nuclei - General properties of Nucleus	2	Lecture
	b) Binding Energy – Nuclear stability	2	Group Discussion
I	c) Theories of Nuclear Composition – Nuclear Forces	2	Lecture With PPT
	d) Meson theory of nuclear forces – Models of Nuclear structure	2	Lecture With Demo
	e) The liquid drop model – The shell model	2	Seminar
	f) The collective model.	1	
Unit	Particle Accelarators	Hours (11)	Mode
II	a) Introduction – Van de Graaff generator	1	Lecture
	b) The Linear Accelerator – The	2	Group Discussion

	Cyclotron		Lecture With PPT
	c) The synchrocyclotron – The	2	
	Betatron		Lecture With Demo
	d) The Synchrotrons – The protron Synchroton (Bevatron, Cosmotron)	2	Seminar
	e) Detectors - Wilson Cloud	2	
	Chamber		
	f) Bubble Chamber - Photographic		
	Emulsion technique	2 Hours	
Unit	Radioactivity	(11)	Mode
	a) Discovery of Radio Activity –	2	
	Natural Radio Activity		
	b) Alpha, Beta and Gamma rays – Properties of Alpha, Beta and	2	Lecture With Group
	Gamma rays		Discussion
III	c) Range of Alpha Particles	1	Lecture With PPT
	d) Geiger-Nuttal Law – Geiger-		
	Nuttal Experiment	2	Lecture
	e) Internal Conversion - Law of	2	
	Radioactive disintegration	-	Seminar
	f) Half life period – Mean life	2	
Unit	Nuclear Disintegration	Hours (11)	Mode
	a) Nuclear transmutation by alpha	3	
	particles, protons, deuterons,		Lecture
	neutrons and electrons		Lecture
	b) Nuclear Fission - Energy released		Seminar
	in Fission	1	
	c) Chain Reaction – Atom Bomb	1	Lecture With PPT
IV	d) Nuclear Fusion – Source of Stellar	2	
	Energy		
	e) CN cycle, pp cycle	2	
	f) Thermonuclear reactions -	1	
	Hydrogen Bomb		
	g) Controlled Thermonuclear	1	
	Reactions		
Unit	Nuclear Reactor	Hours (11)	Mode
	a) Nuclear Reactors – PWR	2	
	h) Doiling Water Departs - Fast		
	b) Boiling Water Reactor – Fast Breeder Reactor	2	Lecture
		4	Locture
T 7	c) Radiation Hazards - Applications	2	Group Discussion
V	c) Radiation Hazards - Applications of Radio Isotopes	2 1	Group Discussion
V	c) Radiation Hazards - Applications of Radio Isotopesd) Cosmic Rays	_	Group Discussion Lecture With PPT
V	c) Radiation Hazards - Applications of Radio Isotopes	_	Lecture With PPT
V	 c) Radiation Hazards - Applications of Radio Isotopes d) Cosmic Rays e) Discovery of Cosmic Rays - East 	1	

Course Designed by 1. Dr. T.Rajesh Kumar 2. Dr.P.Uma Mageshwari

Programme	B.Sc	B.Sc Programme Code			
Course Code	20UPHE61	Number of Hours/Cy	cle 4		
Semester	VI	Max. Marks	10	0	
Part	III	Credit	4		
	CORE ELEC	CTIVE COURSE – II			
Course Title	Space Physics	Space Physics			Р
Cognitive Level	Upto K3	Upto K3			-

L-Lecture T-Tutorial P-Practical

Preamble

To study the concepts of Astronomy, understand the optical telescopic methods, concepts of stellar evolution and classify the types of Galaxy.

Unit I	Spectroscopy in Astronomy	12 Hours
	Introduction - Sunlight and spectroscopy - Atoms and matter - Model of the atom - Simple spectroscopy - Analyzing sunlight -The conservation of energy - Electromagnetic spectrum.	
Unit II	The Earth and the Moon	12 Hours
	History of the earth - Temperature of a planet - The atmosphere - Pressure distribution - Magnetosphere - The moon - The lunar surface - The lunar interior - Eclipses - Lunar eclipse - Solar eclipse.	
Unit III	The Sun	12 Hours
	Introduction - Ordinary gases - Physical Properties of the sun - Structure of the sun - Solar atmosphere - Solar wind - Solar flares - Sunspots - Auroras - Solar prominences.	
Unit IV	The Universe of Stars	12Hours
	Birth of Stars - Chemical composition and the energy generation of the stars - Hertzsbrung Russell Diagram - Stellar evolution and the HR diagram - Stellar anatomy - Spectral classification of stars - Luminosity of a star - Star models.	
Unit V	Galaxy	12 Hours
	Introduction - Classification of galaxies - Milky way galaxy - Galactic clusters - Differential galactic rotation - Rotation and mass distribution - Rotation curve and Doppler shift - The galactic center.	

Pedagogy

These concepts are better understood when lectures are accompanied with chalk and talk method, demonstration, Power Point Presentation and Learning aids.

Text Books

1. Mujiber Rahman.A , (2019), "Concepts of Astro Physics", Scitech Publications Private Limited

Education

Reference Books

- 1. Abell, Morrison and Wolf,(1987),"*Exploration of the Universe*",Saunders College Publications.
- 2. Carrol and Ostlie, (2007), "Introduction to Modern Astrophysics", Pearson International.
- 3. Niclolas.A., Pananides and Thomas Arny.,(1979), "*Introductory Astronomy*", Addison Wesley Publication Company.

E-Resources

- https://www.slac.stanford.edu/econf/C0307073/papers/LNEA_complete.pdf
- https://people.lam.fr/buat.veronique/SPACE_poly1_M1.pdf

Course Outcomes

At the end of the course, students would be able to

Unit I	CO1	Interpret the concept of Spectroscopy in Astronomy
Unit II	CO2	Illustrate the pressure and temperature distribution of the Earth and the Moon.
Unit III	CO3	Organize the physical properties and structure of the Sun.
Unit IV	CO4	Identify the spectral classification of stars.
Unit V	CO5	Manipulate the rotation and mass distribution of the Galaxy.

Mapping of Programme Specific Outcomes [PSOs] with Course Outcomes [COs]

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	3	2	2	2	2	1	1	1	1	1	1	1
CO2	3	2	2	2	2	1	2	1	1	1	1	1
CO3	3	3	2	2	2	2	1	1	1	1	1	1
CO4	2	2	3	3	2	2	1	2	1	1	1	1
CO5	2	2	3	3	1	1	2	1	1	1	1	1

1-Low 2- Moderate 3- High

BLUE PRINT – End Semester Examinations

Articulation Mapping - K Levels with Course Outcomes (COs)

			Secti	on A	Section B	Section C
Units	COs	COs K-Level MCQs		CQs	Either/ or Choice	Open Choice
			No. Of Questions	K-Level	No. of Question	No.of Question
1	CO1	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
2	CO2	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
3	CO3	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
4	CO4	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
5	CO5	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)
No of 0	Questions	to be asked	10		10	5
No of 0	No of Questions to be		10		5	3
Marks	Marks for each Question		1		4	10
Total 1	marks for	each	10		20	30

K1 – Remembering and recalling facts with specific answers

K2 - Basic understanding of facts and stating main ideas with general answers

K3 - Application oriented - Solving problems

Distribution of Section –wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without Choice
K1	10	-	-	10	10
K2	-	40	-	40	40
K3	-	-	50	50	50
Total Marks	10	40	50	100	100

Spectroscopy in Astronomy	Hours (12)	M.J.		
		Mode		
a)Introduction - Sunlight and Spectroscopy	3			
b) Atoms and Matter and model of the atom –	3			
Simple spectroscopy				
	3	Lecture		
Y .	2			
		Mode		
	3			
<u>.</u>		Lecture		
	3			
	2	Lecture		
c) The Lunar Surface – The Lunar Interior	3	With		
d) Eclipses – Lunar Eclipse – Solar Eclipse.	3	PPT		
The Sun	Hours (12)	Mode		
a) Introduction - Ordinary gases - Physical	4	Lecture		
Properties of the sun				
b) Structure of the Sun – Solar Atmosphere– 4				
	Wit			
	•	Demo		
The Universe of Stars	Hours (12)	Mode		
a) Birth of Stars – Chemical composition and	4			
the energy generation of the stars		Lecture		
b) Hertzsbrung Russell Diagram – Stellar	4	With		
		PPT		
	4	Lecture		
·				
-		Mode		
	4	Lecture		
Milky way galaxy		With		
b) Galactic clusters – Differential galactic		PPT		
rotation	4	PPT		
	4	Lecture		
	Simple spectroscopy c) Analyzing Sunlight – The Conservation of Energy d) Electromagnetic Spectrum The Earth and the Moon a) History of the Earth – Temperature of a Planet – The Atmosphere b) Pressure Distribution – Magnetosphere – The moon c) The Lunar Surface –The Lunar Interior d) Eclipses – Lunar Eclipse – Solar Eclipse. The Sun a) Introduction – Ordinary gases – Physical Properties of the sun b) Structure of the Sun – Solar Atmosphere– Solar wind – Solar flares c) Sunspots – Auroras – Solar prominences The Universe of Stars a) Birth of Stars – Chemical composition and the energy generation of the stars b) Hertzsbrung Russell Diagram – Stellar evolution and the HR diagram c) Stellar Anatomy – Spectral classification of stars – Luminosity of a star – Star models. Galaxy a) Introduction – Classification of galaxies –	Simple spectroscopyImage: Simple spectroscopyc) Analyzing Sunlight – The Conservation of Energy3d) Electromagnetic Spectrum3The Earth and the MoonHours (12)a) History of the Earth – Temperature of a Planet – The Atmosphere3b) Pressure Distribution – Magnetosphere – The moon3c) The Lunar Surface –The Lunar Interior3d) Eclipses – Lunar Eclipse – Solar Eclipse.3function – Ordinary gases – Physical Properties of the sunHours (12)a) Introduction – Ordinary gases – Physical Solar wind – Solar flares c) Sunspots – Auroras – Solar prominences4function stars – Chemical composition and the energy generation of the stars4b) Hertzsbrung Russell Diagram – Stellar evolution and the HR diagram c) Stellar Anatomy – Spectral classification of stars – Luminosity of a star – Star models.4GalaxyHours (12)a) Introduction – Classification of galaxies –4		

Course Designed by

1. Dr. S.Saravanan

2. Dr. R.Jayaraman

Programme	B.Sc	B.Sc Programme Code					
Course Code	20UPHE62	20UPHE62 Number of Hours/Cycle					
Semester	VI	VI Max. Marks					
Part	III	III Credit					
	CORE ELECT	TIVE COURSE – II					
Course Title	Bio - Medical	Bio - Medical Physics			Р		
Cognitive Level	Upto K3	Upto K3			-		
L – Lecture T – Tutorial P – Practical							

Preamble

To provide an understanding of the Anatomy and various medical instruments.

Unit I	Basic Anatomy	12 Hours					
	Introduction - Anatomical terminology - Modelling and						
	measurement - Forces on and in the body - How forces affect the						
	body - Frictional forces – Physics of the Skeleton.						
Unit II	Physics of Heart	12 Hours					
	Introduction – Pressure system of the body- Physics of cardio						
	vascular system - Working of the heart - Transmural pressure						
	across blood vessel walls - Blood flow conditions - Turbulent						
	flow – Electricity within a body.						
Unit III	Physics of Ear and Eye	12 Hours					
	Introduction - Sound in medicine - Physics of ear and hearing -						
	Configuration of ear - The outer ear - The ear drum - The						
	middle ear - The inner ear- Physics of eye and vision - General						
	structure of the eye - Eye defects.						
Unit IV	Light in Medicine and ECG	12 Hours					
	Introduction - Applications of light in medicine - Applications						
	of UV and IR in medicine - Applications of Laser in medicine -						
	Electro Cardio Graph (ECG) - ECG lead configuration - ECG						
	recording set up.						
Unit V	EEG	12 Hours					
	Electroencephalography (EEG) - Eletcromyography (EMG) -						
	Recording Setup - Computer Tomography (CT) - Block diagram						
	of CT - Data Presentation - Scan Artifacts - Applications of						
	Computer Tomography.						

Pedagogy

These concepts are better understood when lectures are accompanied with chalk and talk method, demonstration, Power Point Presentation and Learning aids.

Text Books

1. Dr. Mujiber Rahman.A, (2019), "Medical Physics". Scitech Publications India Private Limited.

Reference Books

- 1. John.R., Cameron and James & Skofronick. G, (1978), "Medical Physics", John Willy & Sons.
- 2. Dr.Arumugam.M, (2019), "Biomedical instrumentation", Anuradha publications.

E-Resources

• https://www.osti.gov/servlets/purl/4420406

• https://www.tutorialsduniya.com/notes/medical-physics-notes/

Course Outcomes

At the end of the course, students would be able to

Unit I	CO1	Organize the Anatomical Terminology & Modelling and Measurement.
Unit II	CO2	Interpret configuration of ear.
Unit III	CO3	Sketch the Applications of Laser in Medicine.
Unit IV	CO4	Manipulate the lead configuration and recording setup.
Unit V	CO5	Demonstrate the medical imaging techniques.

Mapping of Programme Specific Outcomes [PSOs] with Course Outcomes [COs]

PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
3	2	2	2	2	1	1	1	1	1	1	1
3	2	2	2	2	1	2	1	1	1	1	1
3	3	2	2	2	2	1	1	1	1	1	1
2	2	3	3	2	2	1	2	1	1	1	1
2	2	3	3	1	1	2	1	1	1	1	1
	PSO1 3 3 3 2 2 2	PSO1 PSO2 3 2 3 2 3 3 2 2 2 2 2 2	PSO1 PSO2 PSO3 3 2 2 3 2 2 3 3 2 2 3 2 2 2 3 2 2 3 2 2 3	PSO1PSO2PSO3PSO432223222332222332233	PSO1PSO2PSO3PSO4PSO53222232222332222233222331	PSO1 PSO2 PSO3 PSO4 PSO5 PSO6 3 2 2 2 1 3 2 2 2 1 3 2 2 2 1 3 3 2 2 2 1 3 3 2 2 2 1 2 2 3 3 2 2 2 2 2 3 3 2 2 2 2 2 3 3 1 1	PSO1 PSO2 PSO3 PSO4 PSO5 PSO6 PSO7 3 2 2 2 1 1 3 2 2 2 1 2 3 3 2 2 2 1 2 3 3 2 2 2 1 2 3 3 2 2 2 1 2 2 2 3 3 2 2 1 2 2 3 3 2 2 1 2 2 3 3 1 1 2	PSO1PSO2PSO3PSO4PSO5PSO6PSO7PSO83222111322212133222112233221122331121	PSO1PSO2PSO3PSO4PSO5PSO6PSO7PSO8PSO9322211113222121133222111223322111223311211	PSO1PSO2PSO3PSO4PSO5PSO6PSO7PSO8PSO9PSO10322211111322212111332221111223322111223311211	PSO1PSO2PSO3PSO4PSO5PSO6PSO7PSO8PSO9PSO10PSO1132221111113222121111332221111122332211112233112111

1-Low 2- Moderate 3- High

BLUE PRINT – End Semester Examinations

Articulation Mapping - K Levels with Course Outcomes (COs)

			Secti	on A	Section B	Section C	
Units	COs	K-Level	мс	ŻQs	Either/ or Choice	Open Choice	
			No. Of Questions	K-Level	No. of Question	No.of Question	
1	CO1	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)	
2	CO2	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)	
3	CO3	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)	
4	CO4	Up to K3	2 K1&K1		2 (K2&K2)	1 (K3)	
5	CO5	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)	
No of Questions to be asked		10		10	5		
No of Questions to be		10		5	3		
Marks for each Question		1		4	10		
Total marks for each		otal marks for each 10			20	30	

K1 – Remembering and recalling facts with specific answers

K2 - Basic understanding of facts and stating main ideas with general answers

K3 - Application oriented - Solving problems

Distribution of Section –wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without Choice	
K1	10	-	-	10	10	
K2	-	40	-	40	40	
К3	-	-	50	50	50	
Total Marks	10	40	50	100	100	

	Lesson Plan		
Unit	Basic Anatomy	Hours (12)	Mode
	a) Introduction - Anatomical terminology	3	
	b) Modelling and measurement - Forces on and	3	
Ι	in the body		
	c) How forces affect the body	3	Lecture
	d) Frictional forces – Physics of the Skeleton.	3	
Unit	Physics of Heart	Hours (12)	Mode
	a) Introduction – Pressure system of the body-	3	
	b) Physics of cardio vascular system	3	
п	c) Working of the heart – Transmural pressure	3	Lecture
	across blood vessel walls	5	
	d) Blood flow conditions – Turbulent	3	Lecture
	flow – Electricity within a body.		With PPT
Unit	Light in Medicine and ECG	Hours (12)	Mode
	a)Introduction - Applications of light in	4	
	medicine		Lecture
III	b) Applications of UV and IR in medicine -	4	T
	Applications of Laser in medicine		Lecture With Demo
	c) Electro Cardio Graph (ECG) - ECG lead configuration – ECG recording set up.	4	with Demo
Unit	X-Rays and ECG	4 Hours (12)	Mode
Umt	a)X-rays - The Coolidge Tube-Production of	Hours (12)	Mode
	X-rays	4	
	b) X-ray spectra – Characteristics of X-Ray	4	Lecture
IV	Spectrum – Origin of Characteristics X-Rays	-	With PPT
	c) Electro Cardio Graph (ECG) - ECG Lead	4	Lecture
	Configuration -ECG recording set up.		Lecture
Unit	EEG	Hours (12)	Mode
	a)Electroencephalography (EEG) -	4	Lecture
	Eletcromyography (EMG) – Recording Setup	4	With PPT
v	b) Computer Tomography (CT) - Block		********
	diagram of CT	4	Lecture
	c) Data Presentation – Scan Artifacts -	4	
	Applications of Computer Tomography.		

Course Designed by

- 1. Dr. K.Ramavenkateswari
- 2. Dr. K.Jayabala

Programme	B.Sc	Programme Code		UPH		
Course Code	20UPHE63	Number of Hours/O	Number of Hours/Cycle		4	
Semester	VI	Max. Marks	Max. Marks			
Part	III	Credit		4		
	CORE ELEC	FIVE COURSE – II				
Course Title	Laser physics		L	Т	Р	
Cognitive Level	Upto K3	Upto K3		-	-	
L – Lecture T – Tutorial P – Practical						

To make the students to understand the basic concepts of Lasers and its applications in various fields.

Unit I	Elements of Laser	12 Hours			
	Spontaneous emission - Stimulated emission - Active				
	material - Population inversion - Pumping and pumping				
	schemes - Characteristics of laser - Coherence -				
	Directionality - Monochromaticity				
Unit II	Production of Laser	12 Hours			
	Ruby laser – Nd: YAG laser – Dye laser - Helium -Neon				
	laser - CO ₂ laser - Semiconductor laser				
Unit III	Lasers in Industry	12 Hours			
	Materials processing with lasers – Hole drilling with lasers				
	- Laser cutting - Laser welding - Manufacture of circuits -				
	Marking and wire striping with lasers				
Unit IV	Lasers in Medicine	12 Hours			
	Lasers diagnostics - Lasers in ophthalmology - Lasik -				
	Lasers in dermatology - Lasers against viruses - Lasers				
	used in medicine				
Unit V	Other Applications of Lasers	12 Hours			
	Block diagram of fiber optic communication - Recording				
	and reconstruction of hologram - Laser range finders -				
	Submarine laser communication - Laser gyro				

Pedagogy

These concepts are better understood when lectures are accompanied with chalk and talk method, demonstration, Power Point Presentation and Learning aids.

Text Book

1. Nambiar K.R., (2004), Lasers: Principles, Types and Applications, New Age International (P) Ltd, New Delhi.

Reference Books

- 1. Avadhanulu.N.,(2001), "An Introduction To Lasers" ,Sultan Chand & Company, ,New Delhi.
- 2. William.T.Silfvast,(1998), "Laser Fundamentals", University Press, Published in South Asia by Foundation books.
- 3. Subir Kumar Sarkar (IV Edn, 2010), "Optical fibers & Fiber optic communication systems", Sultan Chand & Company, New Delhi.

Course Outcome

At the end of the course, students would be able to

Unit I	CO1	Illustrate the characteristics of Laser
Unit II	CO2	Demonstrate different types of Laser
Unit III	CO3	Use Lasers in various industrial applications
Unit IV	CO4	Apply Lasers in Medicine
Unit V	CO5	Choose Lasers in communication systems

Mapping of Programme Specific Outcomes [PSOs] with Course Outcomes [COs]

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	3	2	2	2	2	1	1	1	1	1	1	1
CO2	3	2	2	2	2	1	2	1	1	1	1	1
CO3	3	3	2	2	2	2	1	1	1	1	1	1
CO4	2	2	3	3	2	2	1	2	1	1	1	1
CO5	2	2	3	3	1	1	2	1	1	1	1	1

1-Low 2- Moderate 3- High BLUE PRINT – End Semester Examinations

Articulation Mapping - K Levels with Course Outcomes (COs)

			Secti	on A	Section B	Section C	
Units	COs	K-Level	мс	ŻQs	Either/ or Choice	Open Choice	
			No. Of Questions	K-Level	No. of Question	No.of Question	
1	CO1	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)	
2	CO2	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)	
3	CO3	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)	
4	CO4	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)	
5	CO5	Up to K3	2	K1&K1	2 (K2&K2)	1 (K3)	
No of C	Questions	to be asked	10		10	5	
No of Questions to be			10		5	3	
Marks for each Question			1		4	10	
Total marks for each			10		20	30	

K1 - Remembering and recalling facts with specific answers

K2 - Basic understanding of facts and stating main ideas with general answers

K3 - Application oriented - Solving problems

Distribution of Section –wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (Either/or)	Section C (Open Choice)	Total Marks	% of Marks without Choice
K1	10	-	-	10	10
K2	-	40	-	40	40
К3	-	-	50	50	50
Total Marks	10	40	50	100	100

	Lesson Pla	n		
Unit	Elements of Laser	Hours (12)	Mode	
	a) Spontaneous emission - Stimulated emission	3		
Ι	b) Active material - Population inversion	3	Lecture	
	c) Pumping and pumping schemes - Characteristics of laser – Coherence	3		
	d) Directionality - Monochromaticity	3		
Unit	Production of Laser	Hours (12)	Mode	
	a) Ruby laser – Nd:YAG	3		
II	b) Dye laser - Helium -Neon Laser	3	Lecture	
11	c) CO2 Laser	3	Lesture With DDT	
	d) Semiconductor Laser	3	Lecture With PPT	
Unit	Lasers in Industry	Hours (12)	Mode	
	a) Materials processing with lasers – Hole drilling with lasers	4	Lecture	
III	b) Laser cutting – Laser welding	4		
	c) Manufacture of circuits - Marking and wire striping with lasers	4	Lecture With Demo	
Unit	Lasers in Medicine	Hours (12)	Mode	
	a)Lasers diagnostics - Lasers in ophthalmology	4	Lecture With PPT	
IV	b) Lasik – Lasers in dermatology	4		
	c) Lasers against viruses – Lasers used in medicine	4	Lecture	
Unit	Other Applications of Lasers	Hours (12)	Mode	
	a)Block diagram of fiber optic communication	4		
v	b) Recording and reconstruction of hologram – Laser range finders	4	Lecture With PPT	
v	c) Submarine laser communication - Laser gyro	4	Lecture	

Course Designed by

- 1. Dr. T.Rajesh Kumar
- 2. Dr.P.Uma Mageshwari

Programme	B.Sc	B.Sc Programme Code		UPH		
Course Code	20UPHS61	Number of Hours/Cycle	;	2		
Semester	VI	Max. Marks		50		
Part	IV	Credit		2		
	SKILL BAS	ED COURSE – III				
Course Title	Energy Physic	cs L		Т	Р	
Cognitive Level	Upto K3	Upto K3 24		3	3	
L – Lecture T – Tutorial P – Practical						

To provide an understanding of the present energy crisis and various available energy sources.

Unit I	Various Forms of Energy	5 Hours
	Energy - An introduction - Forms of potential Energy -	
	Forms of kinetic Energy - Renewable and non-renewable	
	energy systems - Merits and demerits of renewable and	
	non-renewable sources.	
Unit II	Solar Energy	5 Hours
	Sun-An introduction - Physical properties of the sun - Solar Energy - Energy flow in the Sun - Solar radiation propagation in the atmosphere - Solar heater - Crop dryers - Space cooling.	
Unit III	Solar Energy Applications	5 Hours
	Solar ponds - Solar cooker - Water desalination - Photo voltaic basics - Photo conduction.	
Unit IV	Geothermal, wave Tidal and Biomass Energy	4 Hours
	Geothermal energy - Wind energy - Ocean Thermal Electric Conversion (OTEC) - Wave and tidal energy - Biogas conversion - Gobar gas plants	
Unit V	Solar Energy Collectors	5 Hours
	Physical principles of the conversion of solar radiation into heat - Flat plate collector - Types of flat plate collectors - Solar concentrating collectors - Advantages and disadvantages of concentrating collectors - Concentrating collectors over flat plate collector - Difference between Flat plate and concentrating collectors - Solar selective coatings	

Pedagogy

These concepts are better understood when lectures are accompanied with chalk and talk method, demonstration, Power Point Presentation and Learning aids.

Text Book

1. Mujiber Rahman.A, (2019), "Solar Energy", Scitech Publications Private Limited Education

Reference Books

1. Rai.G.D, (1987), "Solar Energy Utilization", Khanna Publishers.

2. Julien Chen.C, "Physics of Solar Energy", WileyPublications.

E-Resources

- http://www.columbia.edu/~jcc2161/documents/Solar_Energy.pdf
- https://www.advan-kt.com/principlesofsolarengi.pdf

Course Outcomes

At the end of the course, students would be able to

Unit I	CO1	Identify the various forms of Energy
Unit II	CO2	Illustrate the physical properties of sun
Unit III	CO3	Apply solar energy in various fields
Unit IV	CO4	Manipulate Geothermal, wave Tidal and Biomass Energy
Unit V	CO5	Interpret solar collectors

BLUE PRINT – End Semester Examinations

Articulation Mapping - K Levels with Course Outcomes (COs)

			Section	Section A			
Units	COs	Os K-Level	Either/ or	Open Choice			
			No. Of Questions	K-Level	No. of Question		
1	CO1	Up to K3	2	2 (K2 & K2)	1 (K3)		
2	CO2	Up to K3	2	2 (K2 & K2)	1 (K3)		
3	CO3	Up to K3	2	2 (K2 & K2)	1 (K3)		
4	CO4	Up to K3	2	2 (K2 & K2)	1 (K3)		
5	CO5	Up to K3	2	2 (K2 & K2)	1 (K3)		
No of Qu	estions to	o be asked	10		5		
No of Questions to be answered			5		3		
Marks for each Question			3		5		
Total ma	arks for e	ach Section	15		15		

 $\overline{K1}$ – Remembering and recalling facts with specific answers

K2 – Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

Distribution of Section -wise Marks with K Levels

K Levels	Section A (Either/or)	Section B (Open Choice)	Total Marks	% of Marks without Choice
K1	10	-	30	54.5
K2		5	25	45.5
Total Marks	30	25	55	100

	Lesson Plan		
Unit	Various Forms of Energy	Hours (5)	Mode
	a)Energy – an Introduction	1	
	b) Forms of Potential Energy – Forms of	1	
	Kinetic Energy		
Ι	c) Renewable and non-renewable energy	2	
	system		
	d) Merits and Demerits of renewable and		Lecture
	non-renewable sources.	1	Looture
Unit	Solar Energy	Hours (5)	Mode
	a) Sun-an introduction – Physical properties		
	of the sun	1	
	b) Solar Energy – Energy flow in the Sun	1	
п			Lecture
11	c) Solar radiation propagation in the	1	
	atmosphere		Lecture With
	d) Solar Heater – Crop dryers – Space	2	PPT
	cooling.		
Unit	Solar Energy Applications	Hours (5)	Mode
	a) Solar ponds - Solar cooker	2	
	b) Water desalination – Photo voltaic basics	2	_
III			Lecture
	c) Photo conduction.		T (XX7',1
		1	Lecture With Demo
	Geothermal, wave Tidal and Biomass		
Unit	Energy	Hours (4)	Mode
	a) Geothermal Energy - Wind Energy		
		1	
IV	b) Ocean Thermal Electric Conversion	1	Lecture With
	(OTEC) – Wave and Tidal Energy		PPT
	c) Biogas Conversion – Gobar gas plants	2	Ŧ
			Lecture
Unit	Solar Energy Collectors	Hours (5)	Mode
	a) Physical principles of the conversion	2	
	solar radiation into heat – Flat plate		
	collector – types of flat plate collectors		
	b) Solar concentrating collectors –		Lecture With
v	Advantages and disadvantages of	2	PPT
	concentrating collectors - Concentrating		Ŧ.
	collectors over flat plate collector		Lecture
	c) Difference between Flat plate and		
	concentrating collectors – Solar selective	1	
	coatings		

Course Designed by

- 1. Dr. S.Saravanan
- 2. Dr. R.Jayaraman

Programme	B.Sc Programme Code		UPH			
Course Code	20UPHS62	Number of Hours/Cycle	2			
Semester	VI Max. Marks 50					
Part	IV Credit 2					
SF	KILL BASED	COURSE IV	•			
Course Title	Digital And	Communication	L	т	Р	
	Electronics				I	
Cognitive Level	Upto K3		24	3	3	
L – Lecture T – Tutorial P – Practical						

To acquire knowledge on number system, arithmetic building blocks, memories, fundamental concepts of logic gates, counters, registers, fiber optics etc. and also develop skill to build and troubleshoot combinational digital circuits

Unit I	Digital Fundamentals	5 Hours
	Number Systems and Conversions - BCD Code - Gray	
	code - 1's and 2's complements - Basic logic gates - NAND,	
	NOR and EX-OR gates - NAND and NOR as Universal	
	Building blocks - Laws and theorems of Boolean algebra	
Unit II	Sequential Logic	5Hours
	RS, Clocked RS, D, J-K and J-K Master-Slave Flip-flop - Shift registers and Counters- Multiplexers and Demultiplexers - Decoders and Encoders - Memory Circuits -D/A and A/D converters	
Unit III	Modulation and Demodulation	4 Hours
	Amplitude modulation - Frequency modulation, Phase modulation and Pulse Width modulation - Detectors of AM, FM, and PM	
Unit IV	Digital and Satellite Communication	5 Hours
	ASK, FSK, PSK Modulation and Demodulation - Advantages and disadvantages of digital communication - Communication - satellite Systems - Commonly Used frequency in Satellite Communication	
Unit V	Fibre Optic Communication	5 Hours
	Basic fibre optic system - Advantages of fibre optic system - Propagation of light through fibre - Numerical aperture - Acceptance angle - Losses and distortion in optical fibres - Basic fibre optical communication and links - Special applications	

Pedagogy

These concepts are better understood when lectures are accompanied with chalk and talk method, demonstration, Power Point Presentation and Learning aids.

Text Books:

Materials prepared by Department of Physics.

Reference Books:

- 1. Donald P Leach, Albert Paul Malvino, Goutam Saha, (2006), "Digital Principles and Electronics", Tata McGraw Hill Publishing Company Limited.
- 2. Jacob Millman, Christos Halkias, Chetan D Parikh, (2011). "Millman's Integrated Electronics", Tata McGraw Hill Education Private Limited.

E-Resources

- https://mrcet.com/downloads/digital_notes/ECE/III%20Year/DIGITAL%20COM MUNICATIONS.pdf
- https://www.skylineuniversity.ac.ae/pdf/computer/An%20Introduction%20to%20 Digital%20Multimedia.pdf

Course Outcomes

At the end of the course, students would be able to

Unit I	CO1	Identify the Fundamentals of digital system
Unit II	CO2	Manipulate Various Flip flops
Unit III	CO3	Demonstrate Modulation and De Modulation
Unit IV	CO4	Show Digital and Satellite Communication
Unit V	CO5	Illustrate Fibre Optic Communication

BLUE PRINT – End Semester Examinations

Articulation Mapping - K Levels with Course Outcomes (COs)

			Section	n A	Section B
Units COs		K-Level	Either/ or Choice		Open Choice
Omts	cos	K-Lever	No. Of Questions	K-Level	No. of Question
1	CO1	Up to K3	2	2 (K2 & K2)	1 (K3)
2	CO2	Up to K3	2	2 (K2 & K2)	1 (K3)
3	CO3	Up to K3	2	2 (K2 & K2)	1 (K3)
4	CO4	Up to K3	2	2 (K2 & K2)	1 (K3)
5	CO5	Up to K3	2	2 (K2 & K2)	1 (K3)
No of Qu	estions to	be asked	10		5
No of Questions to be answered		5		3	
Marks for each Question		3		5	
Total ma	arks for ea	ich Section	15		15

K1 – Remembering and recalling facts with specific answers

K2 - Basic understanding of facts and stating main ideas with general answers

K3 – Application oriented – Solving problems

Distribution of Section –wise Marks with K Levels

K Levels	Section A (Either/or)	Section B (Open Choice)	Total Marks	% of Marks without Choice
K1	10	-	30	54.5
K2		5	25	45.5
Total Marks	30	25	55	100

Lesson Plan

Unit	Digital Fundamentals	Hours (5)	Mode
	a)Number Systems and Conversions	1	
	b) BCD Code - Gray code - 1's and 2's		Lecture
	complements	1	Lecture With
т	c) Basic logic gates - NAND, NOR and		PPT
Ι	EX-OR gates	1	Lecture With Demo
	d) NAND and NOR as Universal Building	1	Seminar
	blocks e) Laws and theorems of Boolean algebra	1	
	e) Laws and medicins of Boolean argeora	1	
Unit	Sequential Logic	Hours (5)	Mode
	a)RS, Clocked RS, D, Flip flop	1	Lecture
	b) J-K and J-K Master-Slave Flip-flop	1	Group
п	c) Shift registers and Counters	1	Discussion
II	d) Multiplexers and Demultiplexers –		Lecture With
	Decoders and Encoders - Memory Circuits	1	PPT
	e) D/A and A/D converters	_	Seminar
		1	Seminar
Unit	Modulation and Demodulation	Hours (4)	Mode
	a)Amplitude modulation	1	
	b) Frequency modulation	1	Lecture With
III		1	PPT
	c) Phase Modulation and Pulse Width		
	Modulation	1	Lecture
	d) Detectors of AM, FM, PM and PWM	1	Seminar
Unit	Digital and Satellite Communication	Hours (5)	Mode
	a)ASK, FSK, PSK Modulation	1	Lecture
	b) ASK, FSK, PSK Demodulation	1	
	c) Advantages of digital communication.	-	Seminar
IV	Communication Satellite Systems	1	Lecture With
	d)disadvantages of digital communication.	1	PPT
	Communication Satellite Systems		
	e) Commonly Used frequency in Satellite	1	
	Communication	1	
Unit	Fibre Optic Communication	Hours (5)	Mode
	a)Basic Fibre Optic System - Advantages		
		1	
	of Fibre Optic System	1	Lecture
	of Fibre Optic System b) Propagation of light through fibre	1	Lecture Lecture With
V	of Fibre Optic System b) Propagation of light through fibre c) Numerical aperture - Acceptance angle	1	
V	of Fibre Optic System b) Propagation of light through fibre c) Numerical aperture - Acceptance angle - Losses and distortion in optical fibres		Lecture With PPT
v	of Fibre Optic System b) Propagation of light through fibre c) Numerical aperture - Acceptance angle	1	Lecture With

Course Designed by 1. Dr. K.Ramavenkateswari

2. Dr. K.Jayabala

Programme	B.Sc	Programme Code	UPH			
Course Code	20UPHC6P	Number of Hours/Cycle	3			
Semester	VI	Max. Marks	100			
Part	III	Credit	4			
	CORE PRACTICAL - III					
Course Title Major Physics Practicals - III						

List of Practicals

- 1. Spectrometer Grating Normal incidence method
- 2. Spectrometer Cauchy's constants
- 3. Spectrometer Grating Minimum deviation method
- 4. Spectrometer -i-d curve
- 5. Spectrometer -i-i' curve
- 6. LCR Series resonance circuit
- 7. LCR Parallel resonance circuit
- 8. LR Circuit Impedance and Power Factor
- 9. CR Circuit Impedance and Power Factor
- 10. Maxwell's Bridge Self Inductance
- 11. Anderson's Bridge Self inductance
- 12. Dielectric constant measurement

Programme	B.Sc	Programme Code	UPH		
Course Code	20UPHC6Q	Number of Hours/Cycle	3		
Semester	VI	Max. Marks	100		
Part	III	Credit	4		
	CORE PRACTICAL - IV				
Course Title Major Physics Practicals - IV					

List of Practicals

- 1. Junction Diode characteristics
- 2. Zener Diode characteristics
- 3. Transistor characteristics CE Mode
- 4. Bridge Rectifier
- 5. Full Wave Rectifier
- 6. Zener voltage Regulation
- 7. Hartley Oscillator Frequency and Inductance
- 8. Astable multivibrator using discrete components
- 9. Logic gates using discrete components
- 10. Single stage Amplifier
- 11. Clipper and Clamper
- 12. Active Filters

Programme	B.Sc	Programme Code	UPH		
Course Code	20UPHC6R	Number of Hours/Cycle	2		
Semester	VI	Max. Marks	100		
Part	III	Credit	4		
	CORE PRACTICAL - V				
Course Title Major Physics Practicals - V					

List of Practicals

- 1. Universal NAND Gate- IC
- 2. Universal NOR Gate- IC
- 3. Half Adder, Full Adder using NAND gate
- 4. Half Subtractor and Full Subtractor using NAND gate
- 5. Astable multivibrator using IC -555
- 6. Astable Multivibrator using IC 741
- 7. OP AMP- Adder and Subtractor
- 8. Shift Registers
- 9. BCD Adder and Subtractor
- 10. Counters
- 11. Encoder and Decoder
- 12. Flip-Flops

Programme	B.A / B.Sc / B.Com	Programme Code	СРНУ
Course Code	20CPHY51	Number of Hours/Cycle	30
Semester	V	Max. Marks	50
Part		Credit	
V	alue Added C	ourse - III	
Course Title	Optical Sens	ors	
Cognitive Level			

To make the students to understand the basic concepts of Sensors and its applications in various fields.

Unit I	Introduction to Sensors	6 Hours
	Introduction to sensors and biosensors - Characteristics and	
	components of optical biosensors - various transduction	
	mechanisms - Optical probing parameters - Performance	
	parameters - Fabrication and functionalization methods of	
	optical biosensors	
Unit II	Electromagnetic Waves In Matter Dielectrics	6 Hours
	Electromagnetic waves in matter Dielectrics - Reflection and transmission at interface - Fresnel equations - Polarization by reflection – Brewster angle sensor - Electromagnetic waves in matter - Total internal reflection- TIR sensors - waveguide sensors using TIR	
Unit III	Plasmonic Sensors	6 Hours
	Electromagnetic waves in matter Absorption and dispersion – conductors - Drude model for the metal dielectric function and introduction to plasmons - Propagating versus localized plasmons - Optimized sensor configurations - plasmon enhanced sensors	
Unit IV	Interference and diffraction	6 Hours
	Interference and diffraction - Interference and interferometry - Airy function for single layer - Mach Zehnder Interferometer for sensing - Fabry Perot Interferometer for sensing	
Unit V	Bio Sensors	6 Hours
	Biomaterial Structures EM Waves Absorption in Tissue – Chirality - polarization rotation and dichroism, - Review of sensing applications: Scattering–Elastic (Rayleigh), – Inelastic (Raman) – Fluorescence - Some real life optical biosensors	

Text Book

1. Material prepared by Physics Department

Reference Books

- 1. Gupta. B.D, Srivastava. S.K and Verma. R, (2015), "Fiber Optic Sensors Based on Plasmonics" World Scientific Publications.
- 2. Narayanswamy.R, (2004) "Optical Sensors: Industrial, Environmental and Diagnostic Applications" Springer Publications.

Programme	B.A / B.Sc / B.Com	Programme Code	СРНҮ		
Course Code	20CPHY61	Number of Hours/Cycle	30		
Semester	VI	Max. Marks	50		
Part		Credit			
Value Added Course - IV					
Course Title	Electrical Appliances				
Cognitive Level					

To make the students to understand the basics of electrical devices

Unit I	Resistance and Transformers	6 Hours
	Resistance and its types - capacitance and its types -	
	Colour codes-inductance and its units - Transformers -	
	Electrical Charge – Current – Electrical Potential	
Unit II	Detection of Current and Voltage	6 Hours
	Ohm's law - Galvanometer, Ammeter, Voltmeter and	
	Multimeter Analog and Digital - Electrical Energy – Power	
	– Watt – KWh – Consumption and electrical power	
Unit III	AC and DC Circuits	6 Hours
	AC and DC – Single phase and three phase connections –	
	RMS and peak values, House wiring - Star and delta	
	connection – overloading – earthing – short circuiting –	
	Fuses – Colour code for insulation wires	
Unit IV	Inverter and Electrical Switches	6 Hours
	Inverter – UPS – generator and motor – types – different	
	types of windings - circuit breaker-Electrical switches and	
	its types	
Unit V	Electrical Appliances	6 Hours
	Electrical bulbs - Fluorescent lamps - Street Lighting -	
	Flood lighting – Electrical Fans – Wet Grinder – Mixer –	
	Water Heater -electric iron box - microwave oven -	
	Stabilizer	

Text Book

1. Materials Prepared by Department of Physics.

Reference Books

- 1. Louis A. Bloomfield, (2007), *How Everything Works Making Physics Out Of The Ordinary*, University of Virgina, John Willey & sons
- 2. Halliday.D, Resnick.R and Walker,(1960), *Fundamentals of Physics*, 6th Edition, John Wiley and Sons, Inc.

Programme	B.Sc	Programme Code	UPH	
Course Code	20UPHC2P	Number of Hours/Cycle	2	
Semester	II	Max. Marks	100	
Part	III	Credit	3	
CORE PRACTICAL - I				
Course Title Major Physics Practicals - I				

LIST OF EXPERIMENTS

- 1. Young's Modulus Uniform bending (Pin and Microscope)
- 2. Young's Modulus Nom- Uniform bending (Pin and Microscope)
- 3. Acceleration due to gravity -Compound Pendulum
- 4. Moment of Inertia & Rigidity modulus Torsion pendulum
- 5. Verification of Laws Sonometer
- 6. Frequency of the tuning fork Sonometer
- 7. Calibration of Voltmeter Potentiometer
- 8. Potentiometer Calibration of high range voltmeter
- 9. Young's Modulus Uniform Bending Optic Lever and Telescope
- 10. Young's Modulus Non Uniform Bending Optic Lever and Telescope
- 11. Thermal conductivity of bad conductor using Lee's disc
- 12. Coefficient of Viscosity -Stoke's method

Programme	B.Sc	Programme Code	UPH		
Course Code	20UPHC4P	Number of Hours/Cycle	2		
Semester	IV	Max. Marks	100		
Part	III	Credit	2		
Core Practical - II					
Course Title Major Physics Practicals - II					

List of Experiments

- 1. Thickness of the wire Air wedge
- 2. Comparison of Capacitances De Sauty's Bridge
- 3. Comparison of emf's Potentiometer
- 4. Determination of BH Axial coil
- 5. Refractive index of the prism Spectrometer
- 6. Figure of merit Table Galvanometer
- 7. Determination of R Newton's Rings
- 8. Determination of m Axial coil
- 9. Conversion of Galvanometer into Voltmeter
- 10. Conversion of Galvanometer into Ammeter
- 11. Figure of merit Ballistic Galvanometer
- 12. Resistivity of a given coil Carey Foster's bridge